机械模拟器是流行病学的必不可少的工具,可以在不同条件下探索复杂,动态感染的行为并导航不确定的环境。基于ODE的模型是能够快速模拟且可实现基于梯度的优化的主要范式,但可以简化有关人群同质性的假设。基于代理的模型(ABM)是一种越来越流行的替代范式,可以代表接触相互作用的异质性,并具有颗粒状细节和个人行为的代理。但是,常规的ABM框架没有可区分的,并且在可伸缩性方面提出了挑战。因此,将它们连接到辅助数据源是非平凡的。在本文中,我们介绍了GradABM,这是ABMS的新型可扩展,快速和可区分的设计。 GradABM在商品硬件上几秒钟内运行模拟,并启用快速前进和可区分的反向模拟。这使得可以与深度神经网络合并并无缝整合异质数据源以帮助校准,预测和政策评估。我们通过对实际Covid-19和流感数据集进行了广泛的实验来证明GradABM的功效。我们很乐观,这项工作将使ABM和AI社区更加紧密。
translated by 谷歌翻译
COVID-19的大流行提出了对多个领域决策者的流行预测的重要性,从公共卫生到整个经济。虽然预测流行进展经常被概念化为类似于天气预测,但是它具有一些关键的差异,并且仍然是一项非平凡的任务。疾病的传播受到人类行为,病原体动态,天气和环境条件的多种混杂因素的影响。由于政府公共卫生和资助机构的倡议,捕获以前无法观察到的方面的丰富数据来源的可用性增加了研究的兴趣。这尤其是在“以数据为中心”的解决方案上进行的一系列工作,这些解决方案通过利用非传统数据源以及AI和机器学习的最新创新来增强我们的预测能力的潜力。这项调查研究了各种数据驱动的方法论和实践进步,并介绍了一个概念框架来导航它们。首先,我们列举了与流行病预测相关的大量流行病学数据集和新的数据流,捕获了各种因素,例如有症状的在线调查,零售和商业,流动性,基因组学数据等。接下来,我们将讨论关注最近基于数据驱动的统计和深度学习方法的方法和建模范式,以及将机械模型知识域知识与统计方法的有效性和灵活性相结合的新型混合模型类别。我们还讨论了这些预测系统的现实部署中出现的经验和挑战,包括预测信息。最后,我们重点介绍了整个预测管道中发现的一些挑战和开放问题。
translated by 谷歌翻译
流行病学中的数学模型是一种不可或缺的工具,可以确定传染病的动态和重要特征。除了他们的科学价值之外,这些模型通常用于在正在进行的爆发期间提供政治决策和干预措施。然而,通过将复杂模型连接到真实数据来可靠地推断正在进行的爆发的动态仍然很难,并且需要费力的手动参数拟合或昂贵的优化方法,这些方法必须从划痕中重复给定模型的每个应用。在这项工作中,我们用专门的神经网络的流行病学建模的新组合来解决这个问题。我们的方法需要两个计算阶段:在初始训练阶段中,描述该流行病的数学模型被用作神经网络的教练,该主管是关于全球可能疾病动态的全球知识。在随后的推理阶段,训练有素的神经网络处理实际爆发的观察到的数据,并且揭示了模型的参数,以便实际地再现观察到的动态并可可靠地预测未来的进展。通过其灵活的框架,我们的仿真方法适用于各种流行病学模型。此外,由于我们的方法是完全贝叶斯的,它旨在纳入所有可用的关于合理参数值的先前知识,并返回这些参数上的完整关节后部分布。我们的方法在德国的早期Covid-19爆发阶段的应用表明,我们能够获得可靠的概率估计对重要疾病特征,例如生成时间,未检测到的感染部分,症状发作前的传播可能性,以及报告延迟非常适中的现实观测。
translated by 谷歌翻译
在这项工作中,我们提出了一种称为疾病知识神经网络(Dinns)的方法,可以使用能够有效地预测传染病的传播。这种方法在成功的物理学上建立了已经应用于可以通过线性和非线性普通和部分微分方程建模的各种应用的知识神经网络方法。具体而言,我们建立了Pinns向SIR隔间模型的应用,并扩展了描述各种传染病的脚手架数学模型。我们展示神经网络如何能够学习疾病如何传播,预测其进展,并找到其独特参数(例如死亡率)。为了证明Dinns的稳健性和疗效,我们将这种方法应用于11种高度传染病,这些疾病在增加的复杂程度上进行了建模。我们的计算实验表明,Dinns是有效了解传播动态的可靠候选者,并预测其在可用现实世界数据中的进展中的进展。
translated by 谷歌翻译
随着Covid-19影响每个国家的全球和改变日常生活,预测疾病的传播的能力比任何先前的流行病更重要。常规的疾病 - 展开建模方法,隔间模型,基于对病毒的扩散的时空均匀性的假设,这可能导致预测到欠低,特别是在高空间分辨率下。本文采用替代技术 - 时空机器学习方法。我们提出了Covid-LSTM,一种基于长期短期内存深度学习架构的数据驱动模型,用于预测Covid-19在美国县级的发病率。我们使用每周数量的新阳性案例作为时间输入,以及来自Facebook运动和连通数据集的手工工程空间特征,以捕捉时间和空间的疾病的传播。 Covid-LSTM在我们的17周的评估期间优于Covid-19预测集线器集合模型(CovidHub-Ensemble),使其首先比一个或多个预测期更准确的模型。在4周的预测地平线上,我们的型号平均每县平均50例比CovidHub-Ensemble更准确。我们强调,在Covid-19之前,在Covid-19之前的数据驱动预测的未充分利用疾病传播的预测可能是由于以前疾病缺乏足够的数据,除了最近的时尚预测方法的机器学习方法的进步。我们讨论了更广泛的数据驱动预测的障碍,以及将来将使用更多的基于学习的模型。
translated by 谷歌翻译
Agent-based modeling (ABM) is a well-established paradigm for simulating complex systems via interactions between constituent entities. Machine learning (ML) refers to approaches whereby statistical algorithms 'learn' from data on their own, without imposing a priori theories of system behavior. Biological systems -- from molecules, to cells, to entire organisms -- consist of vast numbers of entities, governed by complex webs of interactions that span many spatiotemporal scales and exhibit nonlinearity, stochasticity and intricate coupling between entities. The macroscopic properties and collective dynamics of such systems are difficult to capture via continuum modelling and mean-field formalisms. ABM takes a 'bottom-up' approach that obviates these difficulties by enabling one to easily propose and test a set of well-defined 'rules' to be applied to the individual entities (agents) in a system. Evaluating a system and propagating its state over discrete time-steps effectively simulates the system, allowing observables to be computed and system properties to be analyzed. Because the rules that govern an ABM can be difficult to abstract and formulate from experimental data, there is an opportunity to use ML to help infer optimal, system-specific ABM rules. Once such rule-sets are devised, ABM calculations can generate a wealth of data, and ML can be applied there too -- e.g., to probe statistical measures that meaningfully describe a system's stochastic properties. As an example of synergy in the other direction (from ABM to ML), ABM simulations can generate realistic datasets for training ML algorithms (e.g., for regularization, to mitigate overfitting). In these ways, one can envision various synergistic ABM$\rightleftharpoons$ML loops. This review summarizes how ABM and ML have been integrated in contexts that span spatiotemporal scales, from cellular to population-level epidemiology.
translated by 谷歌翻译
建模传染病传播的时空性质可以提供有用的直觉,以了解疾病传播的时变方面,并且在人们的行动模式中观察到的潜在的复杂空间依赖性。此外,可以利用县级多相关时间序列信息,以便在单个时间序列进行预测。添加到这一挑战是实时数据常常偏离单向高斯分布假设,并且可以显示一些复杂的混合模式。由此激励,我们开发了一种基于深度学习的时间序列模型,用于自动回归混合密度动态扩散网络(ARM3DNet)的概率预测,其认为人们的移动性和疾病在动态定向图上传播。实现高斯混合模型层以考虑从多个相关时间序列学习的实时数据的多模式性质。我们展示了我们的模型,当由于动态协变量特征和混合成分的最佳组合培训时,可以超越传统的统计和深度学习模式,以预测美国县级的Covid-19死亡和案例的数量。
translated by 谷歌翻译
Pandemic(epidemic) modeling, aiming at disease spreading analysis, has always been a popular research topic especially following the outbreak of COVID-19 in 2019. Some representative models including SIR-based deep learning prediction models have shown satisfactory performance. However, one major drawback for them is that they fall short in their long-term predictive ability. Although graph convolutional networks (GCN) also perform well, their edge representations do not contain complete information and it can lead to biases. Another drawback is that they usually use input features which they are unable to predict. Hence, those models are unable to predict further future. We propose a model that can propagate predictions further into the future and it has better edge representations. In particular, we model the pandemic as a spatial-temporal graph whose edges represent the transition of infections and are learned by our model. We use a two-stream framework that contains GCN and recursive structures (GRU) with an attention mechanism. Our model enables mobility analysis that provides an effective toolbox for public health researchers and policy makers to predict how different lock-down strategies that actively control mobility can influence the spread of pandemics. Experiments show that our model outperforms others in its long-term predictive power. Moreover, we simulate the effects of certain policies and predict their impacts on infection control.
translated by 谷歌翻译
Multiple lines of evidence strongly suggest that infection hotspots, where a single individual infects many others, play a key role in the transmission dynamics of COVID-19. However, most of the existing epidemiological models fail to capture this aspect by neither representing the sites visited by individuals explicitly nor characterizing disease transmission as a function of individual mobility patterns. In this work, we introduce a temporal point process modeling framework that specifically represents visits to the sites where individuals get in contact and infect each other. Under our model, the number of infections caused by an infectious individual naturally emerges to be overdispersed. Using an efficient sampling algorithm, we demonstrate how to estimate the transmission rate of infectious individuals at the sites they visit and in their households using Bayesian optimization and longitudinal case data. Simulations using fine-grained and publicly available demographic data and site locations from Bern, Switzerland showcase the flexibility of our framework. To facilitate research and analyses of other cities and regions, we release an open-source implementation of our framework.
translated by 谷歌翻译
在本文中,我们介绍了时间多解决图形神经网络(TMGNN),这是两个学会构建多尺度和多分辨率图结构的第一个体系结构,并结合了时间序列信号以捕获动态图的时间变化。我们已经将我们提出的模型应用于预测流行病和大流行病的任务,该模型是根据几个欧洲国家从实际的covid-19-19-19大流行病和水痘流行中收集的历史时间序列数据,并获得了与其他竞争性的结果相比,与其他竞争性的结果相比先前的最新时间架构和图形学习算法。我们已经表明,捕获图的多尺度和多分辨率结构对于提取本地或全球信息很重要,这些信息在理解全球流行病(例如covid-9)的动态中起着至关重要世界。我们的工作为预测和减轻未来的流行病和流行病带来了有希望的研究方向。
translated by 谷歌翻译
我们提出了Crisp(COVID-19风险评分预测),这是一种基于SEIR模型的人群传播的COVID-19感染的概率图形模型,我们假设跨时间跨越各种渠道之间的(1)个体之间的相互接触(1)例如,蓝牙接触轨迹)以及(2)在给定时间的测试结果,以进行感染,暴露和免疫测试。我们的微型模型在每个时间点都跟踪每个人的感染状态,从易感性,暴露,感染性到恢复。我们既开发蒙特卡洛EM,又开发传递算法的消息来推断接触通道特定的感染传输概率。鉴于所有接触和测试结果数据的潜在感染状态,我们的蒙特卡洛算法使用gibbs采样在整个分析时间内绘制每个人的潜在感染状态的样本。使用模拟数据的实验结果表明,我们的清晰模型可以通过繁殖因子$ R_0 $参数化,并展示了与经典SEIR模型相似的人群水平的传染性和恢复时间序列。但是,由于单个接触数据,该模型允许精细的粒度控制和推断各种COVID-19减轻和抑制政策度量。此外,Block-GIBBS采样算法能够在测试过程隔离方法中支持有效的测试,以包含COVID-19的感染扩散。据我们所知,这是第一个基于个人水平的接触数据对Covid-19感染有效推断的模型;大多数流行病模型是宏观模型,这些模型在整个人群中推理。 Crisp的实现可在Python和C ++中获得,网址为https://github.com/zalandoresearch/crisp。
translated by 谷歌翻译
准确可靠的流行病预测是对公共卫生规划和疾病缓解影响的重要问题。大多数现有的疫情预测模型无视不确定性量化,导致错误校准的预测。近期神经模型的作品,用于不确定感知的时序预测也有几个限制;例如很难在贝叶斯NNS中指定有意义的前瞻,而Deep Leaseming的方法在实践中是计算昂贵的。在本文中,我们填补了这个重要的差距。我们将预测任务模拟为概率生成过程,并提出了一种名为EPIFNP的功能神经过程模型,其直接模拟预测值的概率密度。 EPIFNP利用动态随机相关图来模拟非参数方式之间序列之间的相关性,并设计不同的随机潜变量以捕获不同视角的功能不确定性。我们在实时流感预测环境中的广泛实验表明,EPIFNP在准确性和校准度量中显着优于先前的最先进模型,精度高达2.5倍,校准2.4倍。此外,由于其生成过程的性质,EPIFNP了解当前季节与历史季节类似模式之间的关系,从而实现可解释的预测。超越疫情预测,EPIFNP可以是独立的利益,以便在深度顺序模型中推进预测性分析的深度顺序模型
translated by 谷歌翻译
流行模型是理解传染病的强大工具。但是,随着它们的大小和复杂性的增加,它们可以迅速在计算上棘手。建模方法的最新进展表明,替代模型可用于模拟具有高维参数空间的复杂流行模型。我们表明,深层序列到序列(SEQ2SEQ)模型可以作为具有基于序列模型参数的复杂流行病模型的准确替代物,从而有效地复制了季节性和长期传播动力学。一旦受过培训,我们的代理人可以预测场景比原始模型快几千倍,从而使其非常适合策略探索。我们证明,用博学的模拟器代替传统的流行模型有助于强大的贝叶斯推断。
translated by 谷歌翻译
我们考虑在严重数据稀缺下具有异质代理的离线强化学习(RL),即,我们只观察一个未知潜在的次优政策下的每个代理的单一历史轨迹。我们发现,即使对于常见的“解决”基准设置(如“Makescar”和“Cartpole”),我们发现最先进的离线和基于模型的RL方法的性能显着降低了显着的数据可用性。为了解决这一挑战,我们提出了一种基于模型的离线RL方法,该方法首先通过在学习政策之前共同使用所有代理商的历史轨迹来学习每个代理的个性化模拟器。我们这样做是这样做的,指出代理商的过渡动态可以表示为与代理商,州和行动相关的潜在因子的潜在函数;随后,理论上,理论上建立了这种函数通过可分离代理,状态和动作潜在函数的“低级”分解良好地近似。此表示表明,一个简单的正则化的神经网络架构,以有效地学习每个代理的过渡动态,即使具有稀缺,离线数据。我们在多个基准环境和RL方法中执行大量实验。我们的方法的一致性提高,在国家动态预测和最终奖励方面衡量,确认了我们框架在利用有限的历史数据方面的效力,以同时学习跨代理商的个性化政策。
translated by 谷歌翻译
深度强化学习(DRL)赋予了各种人工智能领域,包括模式识别,机器人技术,推荐系统和游戏。同样,图神经网络(GNN)也证明了它们在图形结构数据的监督学习方面的出色表现。最近,GNN与DRL用于图形结构环境的融合引起了很多关注。本文对这些混合动力作品进行了全面评论。这些作品可以分为两类:(1)算法增强,其中DRL和GNN相互补充以获得更好的实用性; (2)特定于应用程序的增强,其中DRL和GNN相互支持。这种融合有效地解决了工程和生命科学方面的各种复杂问题。基于审查,我们进一步分析了融合这两个领域的适用性和好处,尤其是在提高通用性和降低计算复杂性方面。最后,集成DRL和GNN的关键挑战以及潜在的未来研究方向被突出显示,这将引起更广泛的机器学习社区的关注。
translated by 谷歌翻译
传染病仍然是全世界人类疾病和死亡的主要因素之一,其中许多疾病引起了流行的感染波。特定药物和预防疫苗防止大多数流行病的不可用,这使情况变得更糟。这些迫使公共卫生官员,卫生保健提供者和政策制定者依靠由流行病的可靠预测产生的预警系统。对流行病的准确预测可以帮助利益相关者调整对手的对策,例如疫苗接种运动,人员安排和资源分配,以减少手头的情况,这可以转化为减少疾病影响的影响。不幸的是,大多数过去的流行病(例如,登革热,疟疾,肝炎,流感和最新的Covid-19)表现出非线性和非平稳性特征,这是由于它们基于季节性依赖性变化以及这些流行病的性质的扩散波动而引起的。 。我们使用基于最大的重叠离散小波变换(MODWT)自动回归神经网络分析了各种流行时期时间序列数据集,并将其称为EWNET。 MODWT技术有效地表征了流行时间序列中的非平稳行为和季节性依赖性,并在拟议的集合小波网络框架中改善了自回旋神经网络的预测方案。从非线性时间序列的角度来看,我们探讨了所提出的EWNET模型的渐近平稳性,以显示相关的马尔可夫链的渐近行为。我们还理论上还研究了学习稳定性的效果以及在拟议的EWNET模型中选择隐藏的神经元的选择。从实际的角度来看,我们将我们提出的EWNET框架与以前用于流行病预测的几种统计,机器学习和深度学习模型进行了比较。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
在这项工作中,引入了SVEIDR模型及其变体(老年,疫苗接种模型),以编码不同年龄段和疫苗接种状态的社会接触影响。然后,我们在模拟和现实世界数据上实现了物理信息的神经网络。本文显示了包括从神经网络中学到的COVID-19的传播和预测分析的结果。
translated by 谷歌翻译
随着时间的流逝,估计反事实结果有可能通过协助决策者回答“假设”问题来解锁个性化医疗保健。现有的因果推理方法通常考虑观察和治疗决策之间的定期离散时间间隔,因此无法自然地模拟不规则采样的数据,这是实践中的共同环境。为了处理任意观察模式,我们将数据解释为基础连续时间过程中的样本,并建议使用受控微分方程的数学明确地对其潜在轨迹进行建模。这导致了一种新方法,即治疗效果神经控制的微分方程(TE-CDE),该方程可在任何时间点评估潜在的结果。此外,对抗性训练用于调整时间依赖性混杂,这在纵向环境中至关重要,这是常规时间序列中未遇到的额外挑战。为了评估解决此问题的解决方案,我们提出了一个基于肿瘤生长模型的可控仿真环境,以反映出各种临床方案的一系列场景。在所有模拟场景中,TE-CDE始终优于现有方法,并具有不规则采样。
translated by 谷歌翻译
Covid-19大流行强调了对疫情模型的强大了解的需要。目前的流行模型被归类为机械或非机械方式:机械模型对疾病的动态作出明确的假设,而非机械模型对观察时间序列的形式做出假设。在这里,我们介绍了一种简单的混合模型,该模型桥接两种方法,同时保持两者的益处。该模型表示作为高斯曲线的混合的情况和死亡率的时间序列,提供灵活的函数类,与传统的机制模型相比从数据中学习。虽然该模型是非机械的,但我们表明它是基于网络SIR框架的随机过程的自然结果。这允许学习参数与类似的非机械模型相比,使用更有意义的解释,并且我们使用在Covid-19流行期间收集的辅助移动性数据来验证解释。我们提供了一种简单的学习算法来识别模型参数并建立显示模型可以从数据有效学习模型的理论结果。凭经验,我们发现模型具有低预测误差。该模型可在CovidPredictions中提供.Mit.edu。最终,这使我们能够系统地了解干预措施对Covid-19的影响,这对于开发数据驱动的解决方案来控制流行病的解决方案至关重要。
translated by 谷歌翻译