建模传染病传播的时空性质可以提供有用的直觉,以了解疾病传播的时变方面,并且在人们的行动模式中观察到的潜在的复杂空间依赖性。此外,可以利用县级多相关时间序列信息,以便在单个时间序列进行预测。添加到这一挑战是实时数据常常偏离单向高斯分布假设,并且可以显示一些复杂的混合模式。由此激励,我们开发了一种基于深度学习的时间序列模型,用于自动回归混合密度动态扩散网络(ARM3DNet)的概率预测,其认为人们的移动性和疾病在动态定向图上传播。实现高斯混合模型层以考虑从多个相关时间序列学习的实时数据的多模式性质。我们展示了我们的模型,当由于动态协变量特征和混合成分的最佳组合培训时,可以超越传统的统计和深度学习模式,以预测美国县级的Covid-19死亡和案例的数量。
translated by 谷歌翻译
Probabilistic forecasting, i.e. estimating the probability distribution of a time series' future given its past, is a key enabler for optimizing business processes. In retail businesses, for example, forecasting demand is crucial for having the right inventory available at the right time at the right place. In this paper we propose DeepAR, a methodology for producing accurate probabilistic forecasts, based on training an auto-regressive recurrent network model on a large number of related time series. We demonstrate how by applying deep learning techniques to forecasting, one can overcome many of the challenges faced by widely-used classical approaches to the problem. We show through extensive empirical evaluation on several real-world forecasting data sets accuracy improvements of around 15% compared to state-of-the-art methods.
translated by 谷歌翻译
随着Covid-19影响每个国家的全球和改变日常生活,预测疾病的传播的能力比任何先前的流行病更重要。常规的疾病 - 展开建模方法,隔间模型,基于对病毒的扩散的时空均匀性的假设,这可能导致预测到欠低,特别是在高空间分辨率下。本文采用替代技术 - 时空机器学习方法。我们提出了Covid-LSTM,一种基于长期短期内存深度学习架构的数据驱动模型,用于预测Covid-19在美国县级的发病率。我们使用每周数量的新阳性案例作为时间输入,以及来自Facebook运动和连通数据集的手工工程空间特征,以捕捉时间和空间的疾病的传播。 Covid-LSTM在我们的17周的评估期间优于Covid-19预测集线器集合模型(CovidHub-Ensemble),使其首先比一个或多个预测期更准确的模型。在4周的预测地平线上,我们的型号平均每县平均50例比CovidHub-Ensemble更准确。我们强调,在Covid-19之前,在Covid-19之前的数据驱动预测的未充分利用疾病传播的预测可能是由于以前疾病缺乏足够的数据,除了最近的时尚预测方法的机器学习方法的进步。我们讨论了更广泛的数据驱动预测的障碍,以及将来将使用更多的基于学习的模型。
translated by 谷歌翻译
预测抗流动过程中感染的数量对政府制定抗流动策略极为有益,尤其是在细粒度的地理单位中。以前的工作着重于低空间分辨率预测,例如县级和预处理数据到同一地理水平,这将失去一些有用的信息。在本文中,我们提出了一个基于两个地理水平的数据,用于社区级别的COVID-19预测,该模型(FGC-COVID)基于数据。我们使用比社区更细粒度的地理水平(CBG)之间的人口流动数据来构建图形,并使用图形神经网络(GNN)构建图形并捕获CBG之间的依赖关系。为了预测,为了预测更细粒度的模式,引入了空间加权聚合模块,以将CBG的嵌入基于其地理隶属关系和空间自相关,将CBG的嵌入到社区水平上。在300天LA COVID-19数据中进行的大量实验表明,我们的模型的表现优于社区级Covid-19预测的现有预测模型。
translated by 谷歌翻译
基于预测方法的深度学习已成为时间序列预测或预测的许多应用中的首选方法,通常通常优于其他方法。因此,在过去的几年中,这些方法现在在大规模的工业预测应用中无处不在,并且一直在预测竞赛(例如M4和M5)中排名最佳。这种实践上的成功进一步提高了学术兴趣,以理解和改善深厚的预测方法。在本文中,我们提供了该领域的介绍和概述:我们为深入预测的重要构建块提出了一定深度的深入预测;随后,我们使用这些构建块,调查了最近的深度预测文献的广度。
translated by 谷歌翻译
近年来,图形神经网络(GNN)与复发性神经网络(RNN)的变体相结合,在时空预测任务中达到了最先进的性能。对于流量预测,GNN模型使用道路网络的图形结构来解释链接和节点之间的空间相关性。最近的解决方案要么基于复杂的图形操作或避免预定义的图。本文提出了一种新的序列结构,以使用具有稀疏体系结构的GNN-RNN细胞在多个抽象的抽象上提取时空相关性,以减少训练时间与更复杂的设计相比。通过多个编码器编码相同的输入序列,并随着编码层的增量增加,使网络能够通过多级抽象来学习一般和详细的信息。我们进一步介绍了来自加拿大蒙特利尔的街道细分市场流量数据的新基准数据集。与高速公路不同,城市路段是循环的,其特征是复杂的空间依赖性。与基线方法相比,一小时预测的实验结果和我们的MSLTD街道级段数据集对我们的模型提高了7%以上,同时将计算资源要求提高了一半以上竞争方法。
translated by 谷歌翻译
流行预测是有效控制流行病的关键,并帮助世界缓解威胁公共卫生的危机。为了更好地了解流行病的传播和演变,我们提出了Epignn,这是一种基于图神经网络的流行病预测模型。具体而言,我们设计了一个传输风险编码模块,以表征区域在流行过程中的局部和全局空间效应,并将其纳入模型。同时,我们开发了一个区域感知的图形学习者(RAGL),该图形将传播风险,地理依赖性和时间信息考虑在内,以更好地探索时空依赖性,并使地区意识到相关地区的流行状况。 RAGL还可以与外部资源(例如人类流动性)相结合,以进一步提高预测性能。对五个现实世界流行有关的数据集(包括流感和Covid-19)进行的全面实验证明了我们提出的方法的有效性,并表明Epignn在RMSE中优于最先进的基线。
translated by 谷歌翻译
在本文中,我们介绍了时间多解决图形神经网络(TMGNN),这是两个学会构建多尺度和多分辨率图结构的第一个体系结构,并结合了时间序列信号以捕获动态图的时间变化。我们已经将我们提出的模型应用于预测流行病和大流行病的任务,该模型是根据几个欧洲国家从实际的covid-19-19-19大流行病和水痘流行中收集的历史时间序列数据,并获得了与其他竞争性的结果相比,与其他竞争性的结果相比先前的最新时间架构和图形学习算法。我们已经表明,捕获图的多尺度和多分辨率结构对于提取本地或全球信息很重要,这些信息在理解全球流行病(例如covid-9)的动态中起着至关重要世界。我们的工作为预测和减轻未来的流行病和流行病带来了有希望的研究方向。
translated by 谷歌翻译
Spatiotemporal forecasting has various applications in neuroscience, climate and transportation domain. Traffic forecasting is one canonical example of such learning task. The task is challenging due to (1) complex spatial dependency on road networks, (2) non-linear temporal dynamics with changing road conditions and (3) inherent difficulty of long-term forecasting. To address these challenges, we propose to model the traffic flow as a diffusion process on a directed graph and introduce Diffusion Convolutional Recurrent Neural Network (DCRNN), a deep learning framework for traffic forecasting that incorporates both spatial and temporal dependency in the traffic flow. Specifically, DCRNN captures the spatial dependency using bidirectional random walks on the graph, and the temporal dependency using the encoder-decoder architecture with scheduled sampling. We evaluate the framework on two real-world large scale road network traffic datasets and observe consistent improvement of 12% -15% over state-of-the-art baselines.
translated by 谷歌翻译
Pandemic(epidemic) modeling, aiming at disease spreading analysis, has always been a popular research topic especially following the outbreak of COVID-19 in 2019. Some representative models including SIR-based deep learning prediction models have shown satisfactory performance. However, one major drawback for them is that they fall short in their long-term predictive ability. Although graph convolutional networks (GCN) also perform well, their edge representations do not contain complete information and it can lead to biases. Another drawback is that they usually use input features which they are unable to predict. Hence, those models are unable to predict further future. We propose a model that can propagate predictions further into the future and it has better edge representations. In particular, we model the pandemic as a spatial-temporal graph whose edges represent the transition of infections and are learned by our model. We use a two-stream framework that contains GCN and recursive structures (GRU) with an attention mechanism. Our model enables mobility analysis that provides an effective toolbox for public health researchers and policy makers to predict how different lock-down strategies that actively control mobility can influence the spread of pandemics. Experiments show that our model outperforms others in its long-term predictive power. Moreover, we simulate the effects of certain policies and predict their impacts on infection control.
translated by 谷歌翻译
Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it's fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information. CCS CONCEPTS• Computing methodologies → Neural networks; Artificial intelligence.
translated by 谷歌翻译
COVID-19的大流行提出了对多个领域决策者的流行预测的重要性,从公共卫生到整个经济。虽然预测流行进展经常被概念化为类似于天气预测,但是它具有一些关键的差异,并且仍然是一项非平凡的任务。疾病的传播受到人类行为,病原体动态,天气和环境条件的多种混杂因素的影响。由于政府公共卫生和资助机构的倡议,捕获以前无法观察到的方面的丰富数据来源的可用性增加了研究的兴趣。这尤其是在“以数据为中心”的解决方案上进行的一系列工作,这些解决方案通过利用非传统数据源以及AI和机器学习的最新创新来增强我们的预测能力的潜力。这项调查研究了各种数据驱动的方法论和实践进步,并介绍了一个概念框架来导航它们。首先,我们列举了与流行病预测相关的大量流行病学数据集和新的数据流,捕获了各种因素,例如有症状的在线调查,零售和商业,流动性,基因组学数据等。接下来,我们将讨论关注最近基于数据驱动的统计和深度学习方法的方法和建模范式,以及将机械模型知识域知识与统计方法的有效性和灵活性相结合的新型混合模型类别。我们还讨论了这些预测系统的现实部署中出现的经验和挑战,包括预测信息。最后,我们重点介绍了整个预测管道中发现的一些挑战和开放问题。
translated by 谷歌翻译
揭开多个机场之间的延迟传播机制的神秘面纱对于精确且可解释的延迟预测至关重要,这对于所有航空业利益相关者来说至关重要。主要挑战在于有效利用与延迟传播有关的时空依赖性和外源因素。但是,以前的作品仅考虑有限的时空模式,其因素很少。为了促进延迟预测的更全面的传播建模,我们提出了时空传播网络(STPN),这是一种时空可分开的图形卷积网络,在时空依赖性捕获中是新颖的。从空间关系建模的方面,我们提出了一个多画卷积模型,考虑地理位置和航空公司计划。从时间依赖性捕获的方面,我们提出了一种多头的自我发起的机制,可以端对端学习,并明确地推定延迟时间序列的多种时间依赖性。我们表明,关节空间和时间学习模型产生了Kronecker产品的总和,这是由于时空依赖性归因于几个空间和时间邻接矩阵的总和。通过这种方式,STPN允许对空间和时间因素进行串扰,以建模延迟传播。此外,将挤压和激发模块添加到STPN的每一层,以增强有意义的时空特征。为此,我们在大规模机场网络中将STPN应用于多步进和出发延迟预测。为了验证我们的模型的有效性,我们尝试了两个现实世界中的延迟数据集,包括美国和中国航班延迟;我们表明,STPN优于最先进的方法。此外,STPN产生的反事实表明,它学习了可解释的延迟传播模式。
translated by 谷歌翻译
对传染病疾病的准确预测是有效控制该地区流行病的关键。大多数现有方法忽略了区域之间的潜在动态依赖性或区域之间的时间依赖性和相互依存关系的重要性。在本文中,我们提出了一个内部和内部嵌入式融合网络(SEFNET),以改善流行病预测性能。 SEFNET由两个平行模块组成,分别是嵌入模块的系列间嵌入模块。在嵌入模块的串间嵌入模块中,提出了一个多尺度的统一卷积组件,称为“区域感知卷积”,该组件与自我发挥作用,以捕获从多个区域获得的时间序列之间捕获动态依赖性。内部嵌入模块使用长期的短期内存来捕获每个时间序列中的时间关系。随后,我们学习了两个嵌入的影响度,并将它们与参数矩阵融合法融合在一起。为了进一步提高鲁棒性,Sefnet还与非线性神经网络并行整合了传统的自回归组件。在四个现实世界流行有关的数据集上进行的实验表明,SEFNET具有有效性,并且表现优于最先进的基线。
translated by 谷歌翻译
使用图形卷积网络(GCN)构建时空网络已成为预测交通信号的最流行方法之一。但是,当使用GCN进行交通速度预测时,常规方法通常将传感器之间的关系作为均匀图,并使用传感器累积的数据来学习邻接矩阵。但是,传感器之间的空间相关性并未指定为一个,而是从各种观点方面定义不同。为此,我们旨在研究流量信号数据中固有的异质特征,以以各种方式学习传感器之间的隐藏关系。具体而言,我们设计了一种方法来通过将传感器之间的空间关系分为静态和动态模块来构造每个模块的异质图。我们提出了一个基于网络分散注意力的基于异质性 - 感知图形卷积网络(HAGCN)方法,该方法通过在异质图中考虑每个通道的重要性来汇总相邻节点的隐藏状态。实际流量数据集的实验结果验证了所提出的方法的有效性,比现有模型取得了6.35%的改善,并实现了最先进的预测性能。
translated by 谷歌翻译
犯罪预测问题的现有方法在表达细节时不成功,因为它们将概率值分配给大区域。本文介绍了一种具有图形卷积网络(GCN)和多变量高斯分布的新架构,以执行适用于任何时空数据的高分辨率预测。通过利用GCN的灵活结构并提供细分算法,我们以高分辨率在高分辨率下解决稀疏问题。我们用图形卷积门控经常性单位(Graph-concgru)构建我们的模型,以学习空间,时间和分类关系。在图形的每个节点中,我们学习来自GCN的提取特征的多变量概率分布。我们对现实生活和合成数据集进行实验,我们的模型获得了最佳验证和基线模型中的最佳测试分数,具有显着改进。我们表明我们的模型不仅是生成的,而且是精确的。
translated by 谷歌翻译
最近的研究表明,在将图神经网络应用于多元时间序列预测中,其中时间序列的相互作用被描述为图形结构,并且变量表示为图节点。沿着这一行,现有方法通常假定确定图神经网络的聚合方式的图形结构(或邻接矩阵)是根据定义或自学来固定的。但是,变量的相互作用在现实情况下可以是动态的和进化的。此外,如果在不同的时间尺度上观察到时间序列的相互作用序列的相互作用大不相同。为了使图形神经网络具有灵活而实用的图结构,在本文中,我们研究了如何对时间序列的进化和多尺度相互作用进行建模。特别是,我们首先提供与扩张的卷积配合的层次图结构,以捕获时间序列之间的比例特定相关性。然后,以经常性的方式构建了一系列邻接矩阵,以表示每一层的不断发展的相关性。此外,提供了一个统一的神经网络来集成上述组件以获得最终预测。这样,我们可以同时捕获成对的相关性和时间依赖性。最后,对单步和多步骤预测任务的实验证明了我们方法比最新方法的优越性。
translated by 谷歌翻译
在各种下游机器学习任务中,多元时间序列的可靠和有效表示至关重要。在多元时间序列预测中,每个变量都取决于其历史值,并且变量之间也存在相互依存关系。必须设计模型以捕获时间序列之间的内部和相互关系。为了朝着这一目标迈进,我们提出了时间序列注意变压器(TSAT),以进行多元时间序列表示学习。使用TSAT,我们以边缘增强动态图来表示多元时间序列的时间信息和相互依赖性。在动态图中的节点表示,串行中的相关性表示。修改了一种自我注意力的机制,以使用超经验模式分解(SMD)模块捕获序列间的相关性。我们将嵌入式动态图应用于时代序列预测问题,包括两个现实世界数据集和两个基准数据集。广泛的实验表明,TSAT显然在各种预测范围内使用六种最先进的基线方法。我们进一步可视化嵌入式动态图,以说明TSAT的图形表示功能。我们在https://github.com/radiantresearch/tsat上共享代码。
translated by 谷歌翻译
多变量时间序列预测,分析历史时序序列以预测未来趋势,可以有效地帮助决策。 MTS中变量之间的复杂关系,包括静态,动态,可预测和潜在的关系,使得可以挖掘MTS的更多功能。建模复杂关系不仅是表征潜在依赖性的必要条件以及建模时间依赖性,而且在MTS预测任务中也带来了极大的挑战。然而,现有方法主要关注模拟MTS变量之间的某些关系。在本文中,我们提出了一种新的端到端深度学习模型,通过异构图形神经网络(MTHETGNN)称为多变量时间序列预测。为了表征变量之间的复杂关系,在MTHETGNN中设计了一个关系嵌入模块,其中每个变量被视为图形节点,并且每种类型的边缘表示特定的静态或动态关系。同时,引入了时间嵌入模块的时间序列特征提取,其中涉及具有不同感知尺度的卷积神经网络(CNN)滤波器。最后,采用异质图形嵌入模块来处理由两个模块产生的复杂结构信息。来自现实世界的三个基准数据集用于评估所提出的MTHETGNN。综合实验表明,MTHETGNN在MTS预测任务中实现了最先进的结果。
translated by 谷歌翻译
人口级社会事件,如民事骚乱和犯罪,往往对我们的日常生活产生重大影响。预测此类事件对于决策和资源分配非常重要。由于缺乏关于事件发生的真实原因和潜在机制的知识,事件预测传统上具有挑战性。近年来,由于两个主要原因,研究事件预测研究取得了重大进展:(1)机器学习和深度学习算法的开发和(2)社交媒体,新闻来源,博客,经济等公共数据的可访问性指标和其他元数据源。软件/硬件技术中的数据的爆炸性增长导致了社会事件研究中的深度学习技巧的应用。本文致力于提供社会事件预测的深层学习技术的系统和全面概述。我们专注于两个社会事件的域名:\ Texit {Civil unrest}和\ texit {犯罪}。我们首先介绍事件预测问题如何作为机器学习预测任务制定。然后,我们总结了这些问题的数据资源,传统方法和最近的深度学习模型的发展。最后,我们讨论了社会事件预测中的挑战,并提出了一些有希望的未来研究方向。
translated by 谷歌翻译