Pandemic(epidemic) modeling, aiming at disease spreading analysis, has always been a popular research topic especially following the outbreak of COVID-19 in 2019. Some representative models including SIR-based deep learning prediction models have shown satisfactory performance. However, one major drawback for them is that they fall short in their long-term predictive ability. Although graph convolutional networks (GCN) also perform well, their edge representations do not contain complete information and it can lead to biases. Another drawback is that they usually use input features which they are unable to predict. Hence, those models are unable to predict further future. We propose a model that can propagate predictions further into the future and it has better edge representations. In particular, we model the pandemic as a spatial-temporal graph whose edges represent the transition of infections and are learned by our model. We use a two-stream framework that contains GCN and recursive structures (GRU) with an attention mechanism. Our model enables mobility analysis that provides an effective toolbox for public health researchers and policy makers to predict how different lock-down strategies that actively control mobility can influence the spread of pandemics. Experiments show that our model outperforms others in its long-term predictive power. Moreover, we simulate the effects of certain policies and predict their impacts on infection control.
translated by 谷歌翻译
预测抗流动过程中感染的数量对政府制定抗流动策略极为有益,尤其是在细粒度的地理单位中。以前的工作着重于低空间分辨率预测,例如县级和预处理数据到同一地理水平,这将失去一些有用的信息。在本文中,我们提出了一个基于两个地理水平的数据,用于社区级别的COVID-19预测,该模型(FGC-COVID)基于数据。我们使用比社区更细粒度的地理水平(CBG)之间的人口流动数据来构建图形,并使用图形神经网络(GNN)构建图形并捕获CBG之间的依赖关系。为了预测,为了预测更细粒度的模式,引入了空间加权聚合模块,以将CBG的嵌入基于其地理隶属关系和空间自相关,将CBG的嵌入到社区水平上。在300天LA COVID-19数据中进行的大量实验表明,我们的模型的表现优于社区级Covid-19预测的现有预测模型。
translated by 谷歌翻译
随着Covid-19影响每个国家的全球和改变日常生活,预测疾病的传播的能力比任何先前的流行病更重要。常规的疾病 - 展开建模方法,隔间模型,基于对病毒的扩散的时空均匀性的假设,这可能导致预测到欠低,特别是在高空间分辨率下。本文采用替代技术 - 时空机器学习方法。我们提出了Covid-LSTM,一种基于长期短期内存深度学习架构的数据驱动模型,用于预测Covid-19在美国县级的发病率。我们使用每周数量的新阳性案例作为时间输入,以及来自Facebook运动和连通数据集的手工工程空间特征,以捕捉时间和空间的疾病的传播。 Covid-LSTM在我们的17周的评估期间优于Covid-19预测集线器集合模型(CovidHub-Ensemble),使其首先比一个或多个预测期更准确的模型。在4周的预测地平线上,我们的型号平均每县平均50例比CovidHub-Ensemble更准确。我们强调,在Covid-19之前,在Covid-19之前的数据驱动预测的未充分利用疾病传播的预测可能是由于以前疾病缺乏足够的数据,除了最近的时尚预测方法的机器学习方法的进步。我们讨论了更广泛的数据驱动预测的障碍,以及将来将使用更多的基于学习的模型。
translated by 谷歌翻译
Accurate short-term traffic prediction plays a pivotal role in various smart mobility operation and management systems. Currently, most of the state-of-the-art prediction models are based on graph neural networks (GNNs), and the required training samples are proportional to the size of the traffic network. In many cities, the available amount of traffic data is substantially below the minimum requirement due to the data collection expense. It is still an open question to develop traffic prediction models with a small size of training data on large-scale networks. We notice that the traffic states of a node for the near future only depend on the traffic states of its localized neighborhoods, which can be represented using the graph relational inductive biases. In view of this, this paper develops a graph network (GN)-based deep learning model LocaleGN that depicts the traffic dynamics using localized data aggregating and updating functions, as well as the node-wise recurrent neural networks. LocaleGN is a light-weighted model designed for training on few samples without over-fitting, and hence it can solve the problem of few-sample traffic prediction. The proposed model is examined on predicting both traffic speed and flow with six datasets, and the experimental results demonstrate that LocaleGN outperforms existing state-of-the-art baseline models. It is also demonstrated that the learned knowledge from LocaleGN can be transferred across cities. The research outcomes can help to develop light-weighted traffic prediction systems, especially for cities lacking historically archived traffic data.
translated by 谷歌翻译
流行预测是有效控制流行病的关键,并帮助世界缓解威胁公共卫生的危机。为了更好地了解流行病的传播和演变,我们提出了Epignn,这是一种基于图神经网络的流行病预测模型。具体而言,我们设计了一个传输风险编码模块,以表征区域在流行过程中的局部和全局空间效应,并将其纳入模型。同时,我们开发了一个区域感知的图形学习者(RAGL),该图形将传播风险,地理依赖性和时间信息考虑在内,以更好地探索时空依赖性,并使地区意识到相关地区的流行状况。 RAGL还可以与外部资源(例如人类流动性)相结合,以进一步提高预测性能。对五个现实世界流行有关的数据集(包括流感和Covid-19)进行的全面实验证明了我们提出的方法的有效性,并表明Epignn在RMSE中优于最先进的基线。
translated by 谷歌翻译
人口级社会事件,如民事骚乱和犯罪,往往对我们的日常生活产生重大影响。预测此类事件对于决策和资源分配非常重要。由于缺乏关于事件发生的真实原因和潜在机制的知识,事件预测传统上具有挑战性。近年来,由于两个主要原因,研究事件预测研究取得了重大进展:(1)机器学习和深度学习算法的开发和(2)社交媒体,新闻来源,博客,经济等公共数据的可访问性指标和其他元数据源。软件/硬件技术中的数据的爆炸性增长导致了社会事件研究中的深度学习技巧的应用。本文致力于提供社会事件预测的深层学习技术的系统和全面概述。我们专注于两个社会事件的域名:\ Texit {Civil unrest}和\ texit {犯罪}。我们首先介绍事件预测问题如何作为机器学习预测任务制定。然后,我们总结了这些问题的数据资源,传统方法和最近的深度学习模型的发展。最后,我们讨论了社会事件预测中的挑战,并提出了一些有希望的未来研究方向。
translated by 谷歌翻译
The outburst of COVID-19 in late 2019 was the start of a health crisis that shook the world and took millions of lives in the ensuing years. Many governments and health officials failed to arrest the rapid circulation of infection in their communities. The long incubation period and the large proportion of asymptomatic cases made COVID-19 particularly elusive to track. However, wastewater monitoring soon became a promising data source in addition to conventional indicators such as confirmed daily cases, hospitalizations, and deaths. Despite the consensus on the effectiveness of wastewater viral load data, there is a lack of methodological approaches that leverage viral load to improve COVID-19 forecasting. This paper proposes using deep learning to automatically discover the relationship between daily confirmed cases and viral load data. We trained one Deep Temporal Convolutional Networks (DeepTCN) and one Temporal Fusion Transformer (TFT) model to build a global forecasting model. We supplement the daily confirmed cases with viral loads and other socio-economic factors as covariates to the models. Our results suggest that TFT outperforms DeepTCN and learns a better association between viral load and daily cases. We demonstrated that equipping the models with the viral load improves their forecasting performance significantly. Moreover, viral load is shown to be the second most predictive input, following the containment and health index. Our results reveal the feasibility of training a location-agnostic deep-learning model to capture the dynamics of infection diffusion when wastewater viral load data is provided.
translated by 谷歌翻译
最近的研究侧重于制定流量预测作为一种时空图形建模问题。它们通常在每个时间步骤构造静态空间图,然后将每个节点连接在相邻时间步骤之间以构造时空图形。在这样的图形中,不同时间步骤的不同节点之间的相关性未明确地反映,这可以限制图形神经网络的学习能力。同时,这些模型在不同时间步骤中使用相同的邻接矩阵时,忽略节点之间的动态时空相关性。为了克服这些限制,我们提出了一种时空关节图卷积网络(StJGCN),用于交通预测在公路网络上的几个时间上限。具体地,我们在任何两个时间步长之间构造预定的和自适应时空关节图(STJG),这代表了全面和动态的时空相关性。我们进一步设计了STJG上的扩张因果时空关节图卷积层,以捕获与多个范围不同的视角的时空依赖关系。提出了一种多范围注意机制来聚合不同范围的信息。四个公共交通数据集的实验表明,STJGCN是计算的高效和优于11个最先进的基线方法。
translated by 谷歌翻译
建模传染病传播的时空性质可以提供有用的直觉,以了解疾病传播的时变方面,并且在人们的行动模式中观察到的潜在的复杂空间依赖性。此外,可以利用县级多相关时间序列信息,以便在单个时间序列进行预测。添加到这一挑战是实时数据常常偏离单向高斯分布假设,并且可以显示一些复杂的混合模式。由此激励,我们开发了一种基于深度学习的时间序列模型,用于自动回归混合密度动态扩散网络(ARM3DNet)的概率预测,其认为人们的移动性和疾病在动态定向图上传播。实现高斯混合模型层以考虑从多个相关时间序列学习的实时数据的多模式性质。我们展示了我们的模型,当由于动态协变量特征和混合成分的最佳组合培训时,可以超越传统的统计和深度学习模式,以预测美国县级的Covid-19死亡和案例的数量。
translated by 谷歌翻译
准确性和可解释性是犯罪预测模型的两个基本属性。由于犯罪可能对人类生命,经济和安全的不利影响,我们需要一个可以尽可能准确地预测未来犯罪的模型,以便可以采取早期步骤来避免犯罪。另一方面,可解释的模型揭示了模型预测背后的原因,确保其透明度并允许我们相应地规划预防犯罪步骤。开发模型的关键挑战是捕获特定犯罪类别的非线性空间依赖和时间模式,同时保持模型的底层结构可解释。在本文中,我们开发AIST,一种用于犯罪预测的注意力的可解释的时空时间网络。基于过去的犯罪发生,外部特征(例如,流量流量和兴趣点(POI)信息)和犯罪趋势,AICT模拟了犯罪类别的动态时空相关性。广泛的实验在使用真实数据集的准确性和解释性方面表现出我们模型的优越性。
translated by 谷歌翻译
Covid-19的反复暴发对全球社会产生了持久的影响,该社会呼吁使用具有早期可用性的各种数据来预测大流行波。现有的预测模型可以预测使用移动性数据的第一次爆发浪潮可能不适用于多波预测,因为美国和日本的证据表明,不同波浪之间的流动性模式在感染情况下与波动表现出不同的关系。因此,为了预测多波大流行,我们提出了一个基于社会意识的图形神经网络(SAB-GNN),它考虑了与症状相关的Web搜索频率的衰减,以捕获多个波浪中公共意识的变化。我们的模型结合了GNN和LSTM,以建模城市地区之间的复杂关系,跨区域的移动性模式,Web搜索历史记录和未来的Covid-19感染。我们训练我们的模型,从2020年4月至2021年5月,在雅虎日本公司根据严格的隐私保护规则中收集的四个大流行浪潮中,使用其移动性和Web搜索数据来预测东京地区的未来大流行爆发。结果证明了我们的模型优于最先进的基线,例如ST-GNN,MPNN和GraphLSTM。尽管我们的模型在计算上并不昂贵(只有3层和10个隐藏的神经元),但提出的模型使公共机构能够预料并为将来的大流行爆发做准备。
translated by 谷歌翻译
由于流量大数据的增加,交通预测逐渐引起了研究人员的注意力。因此,如何在交通数据中挖掘复杂的时空相关性以预测交通状况更准确地成为难题。以前的作品组合图形卷积网络(GCNS)和具有深度序列模型的自我关注机制(例如,复发性神经网络),分别捕获时空相关性,忽略时间和空间的关系。此外,GCNS受到过平滑问题的限制,自我关注受到二次问题的限制,导致GCN缺乏全局代表能力,自我注意力效率低下捕获全球空间依赖性。在本文中,我们提出了一种新颖的交通预测深入学习模型,命名为多语境意识的时空关节线性关注(STJLA),其对时空关节图应用线性关注以捕获所有时空之间的全球依赖性节点有效。更具体地,STJLA利用静态结构上下文和动态语义上下文来提高模型性能。基于Node2VEC和单热编码的静态结构上下文丰富了时空位置信息。此外,基于多头扩散卷积网络的动态空间上下文增强了局部空间感知能力,并且基于GRU的动态时间上下文分别稳定了线性关注的序列位置信息。在两个现实世界交通数据集,英格兰和PEMSD7上的实验表明,我们的Stjla可以获得高达9.83%和3.08%,在最先进的基线上的衡量标准的准确性提高。
translated by 谷歌翻译
接触犯罪和暴力会损害个人的生活质量和社区的经济增长。鉴于机器学习的迅速发展,需要探索自动解决方案以防止犯罪。随着细粒度的城市和公共服务数据的可用性越来越多,最近融合了这种跨域信息以促进犯罪预测的激增。通过捕获有关社会结构,环境和犯罪趋势的信息,现有的机器学习预测模型从不同观点探索了动态犯罪模式。但是,这些方法主要将这种多源知识转换为隐性和潜在表示(例如,学区的嵌入),这仍然是研究显式因素对幕后犯罪发生的影响的影响仍然是一个挑战。在本文中,我们提出了一个时空的元数据指导性犯罪预测(STMEC)框架,以捕获犯罪行为的动态模式,并明确地表征了环境和社会因素如何相互互动以产生预测。广泛的实验表明,与其他先进的时空模型相比,STMEC的优越性,尤其是在预测重罪(例如使用危险武器的抢劫和袭击)时。
translated by 谷歌翻译
COVID-19的大流行提出了对多个领域决策者的流行预测的重要性,从公共卫生到整个经济。虽然预测流行进展经常被概念化为类似于天气预测,但是它具有一些关键的差异,并且仍然是一项非平凡的任务。疾病的传播受到人类行为,病原体动态,天气和环境条件的多种混杂因素的影响。由于政府公共卫生和资助机构的倡议,捕获以前无法观察到的方面的丰富数据来源的可用性增加了研究的兴趣。这尤其是在“以数据为中心”的解决方案上进行的一系列工作,这些解决方案通过利用非传统数据源以及AI和机器学习的最新创新来增强我们的预测能力的潜力。这项调查研究了各种数据驱动的方法论和实践进步,并介绍了一个概念框架来导航它们。首先,我们列举了与流行病预测相关的大量流行病学数据集和新的数据流,捕获了各种因素,例如有症状的在线调查,零售和商业,流动性,基因组学数据等。接下来,我们将讨论关注最近基于数据驱动的统计和深度学习方法的方法和建模范式,以及将机械模型知识域知识与统计方法的有效性和灵活性相结合的新型混合模型类别。我们还讨论了这些预测系统的现实部署中出现的经验和挑战,包括预测信息。最后,我们重点介绍了整个预测管道中发现的一些挑战和开放问题。
translated by 谷歌翻译
交通流量预测是智能运输系统的重要组成部分,从而受到了研究人员的关注。但是,交通道路之间的复杂空间和时间依赖性使交通流量的预测具有挑战性。现有方法通常是基于图形神经网络,使用交通网络的预定义空间邻接图来建模空间依赖性,而忽略了道路节点之间关系的动态相关性。此外,他们通常使用独立的时空组件来捕获时空依赖性,并且不会有效地对全局时空依赖性进行建模。本文提出了一个新的时空因果图形注意网络(STCGAT),以解决上述挑战。在STCGAT中,我们使用一种节点嵌入方法,可以在每个时间步骤中自适应生成空间邻接子图,而无需先验地理知识和对不同时间步骤动态生成图的拓扑的精细颗粒建模。同时,我们提出了一个有效的因果时间相关成分,其中包含节点自适应学习,图形卷积以及局部和全局因果关系卷积模块,以共同学习局部和全局时空依赖性。在四个真正的大型流量数据集上进行的广泛实验表明,我们的模型始终优于所有基线模型。
translated by 谷歌翻译
在本文中,我们介绍了时间多解决图形神经网络(TMGNN),这是两个学会构建多尺度和多分辨率图结构的第一个体系结构,并结合了时间序列信号以捕获动态图的时间变化。我们已经将我们提出的模型应用于预测流行病和大流行病的任务,该模型是根据几个欧洲国家从实际的covid-19-19-19大流行病和水痘流行中收集的历史时间序列数据,并获得了与其他竞争性的结果相比,与其他竞争性的结果相比先前的最新时间架构和图形学习算法。我们已经表明,捕获图的多尺度和多分辨率结构对于提取本地或全球信息很重要,这些信息在理解全球流行病(例如covid-9)的动态中起着至关重要世界。我们的工作为预测和减轻未来的流行病和流行病带来了有希望的研究方向。
translated by 谷歌翻译
近年来,图形神经网络(GNN)与复发性神经网络(RNN)的变体相结合,在时空预测任务中达到了最先进的性能。对于流量预测,GNN模型使用道路网络的图形结构来解释链接和节点之间的空间相关性。最近的解决方案要么基于复杂的图形操作或避免预定义的图。本文提出了一种新的序列结构,以使用具有稀疏体系结构的GNN-RNN细胞在多个抽象的抽象上提取时空相关性,以减少训练时间与更复杂的设计相比。通过多个编码器编码相同的输入序列,并随着编码层的增量增加,使网络能够通过多级抽象来学习一般和详细的信息。我们进一步介绍了来自加拿大蒙特利尔的街道细分市场流量数据的新基准数据集。与高速公路不同,城市路段是循环的,其特征是复杂的空间依赖性。与基线方法相比,一小时预测的实验结果和我们的MSLTD街道级段数据集对我们的模型提高了7%以上,同时将计算资源要求提高了一半以上竞争方法。
translated by 谷歌翻译
The stock market prediction has been a traditional yet complex problem researched within diverse research areas and application domains due to its non-linear, highly volatile and complex nature. Existing surveys on stock market prediction often focus on traditional machine learning methods instead of deep learning methods. Deep learning has dominated many domains, gained much success and popularity in recent years in stock market prediction. This motivates us to provide a structured and comprehensive overview of the research on stock market prediction focusing on deep learning techniques. We present four elaborated subtasks of stock market prediction and propose a novel taxonomy to summarize the state-of-the-art models based on deep neural networks from 2011 to 2022. In addition, we also provide detailed statistics on the datasets and evaluation metrics commonly used in the stock market. Finally, we highlight some open issues and point out several future directions by sharing some new perspectives on stock market prediction.
translated by 谷歌翻译
准确的交通预测对于智能城市实现交通控制,路线计划和流动检测至关重要。尽管目前提出了许多时空方法,但这些方法在同步捕获流量数据的时空依赖性方面缺陷。此外,大多数方法忽略了随着流量数据的变化而产生的道路网络节点之间的动态变化相关性。我们建议基于神经网络的时空交互式动态图卷积网络(STIDGCN),以应对上述流量预测的挑战。具体而言,我们提出了一个交互式动态图卷积结构,该结构将序列划分为间隔,并通过交互式学习策略同步捕获流量数据的时空依赖性。交互式学习策略使StidGCN有效地预测。我们还提出了一个新颖的动态图卷积模块,以捕获由图生成器和融合图卷积组成的流量网络中动态变化的相关性。动态图卷积模块可以使用输入流量数据和预定义的图形结构来生成图形结构。然后将其与定义的自适应邻接矩阵融合,以生成动态邻接矩阵,该矩阵填充了预定义的图形结构,并模拟了道路网络中节点之间的动态关联的产生。在四个现实世界流量流数据集上进行的广泛实验表明,StidGCN的表现优于最先进的基线。
translated by 谷歌翻译
Providing accurate estimated time of package delivery on users' purchasing pages for e-commerce platforms is of great importance to their purchasing decisions and post-purchase experiences. Although this problem shares some common issues with the conventional estimated time of arrival (ETA), it is more challenging with the following aspects: 1) Inductive inference. Models are required to predict ETA for orders with unseen retailers and addresses; 2) High-order interaction of order semantic information. Apart from the spatio-temporal features, the estimated time also varies greatly with other factors, such as the packaging efficiency of retailers, as well as the high-order interaction of these factors. In this paper, we propose an inductive graph transformer (IGT) that leverages raw feature information and structural graph data to estimate package delivery time. Different from previous graph transformer architectures, IGT adopts a decoupled pipeline and trains transformer as a regression function that can capture the multiplex information from both raw feature and dense embeddings encoded by a graph neural network (GNN). In addition, we further simplify the GNN structure by removing its non-linear activation and the learnable linear transformation matrix. The reduced parameter search space and linear information propagation in the simplified GNN enable the IGT to be applied in large-scale industrial scenarios. Experiments on real-world logistics datasets show that our proposed model can significantly outperform the state-of-the-art methods on estimation of delivery time. The source code is available at: https://github.com/enoche/IGT-WSDM23.
translated by 谷歌翻译