我们提出了Crisp(COVID-19风险评分预测),这是一种基于SEIR模型的人群传播的COVID-19感染的概率图形模型,我们假设跨时间跨越各种渠道之间的(1)个体之间的相互接触(1)例如,蓝牙接触轨迹)以及(2)在给定时间的测试结果,以进行感染,暴露和免疫测试。我们的微型模型在每个时间点都跟踪每个人的感染状态,从易感性,暴露,感染性到恢复。我们既开发蒙特卡洛EM,又开发传递算法的消息来推断接触通道特定的感染传输概率。鉴于所有接触和测试结果数据的潜在感染状态,我们的蒙特卡洛算法使用gibbs采样在整个分析时间内绘制每个人的潜在感染状态的样本。使用模拟数据的实验结果表明,我们的清晰模型可以通过繁殖因子$ R_0 $参数化,并展示了与经典SEIR模型相似的人群水平的传染性和恢复时间序列。但是,由于单个接触数据,该模型允许精细的粒度控制和推断各种COVID-19减轻和抑制政策度量。此外,Block-GIBBS采样算法能够在测试过程隔离方法中支持有效的测试,以包含COVID-19的感染扩散。据我们所知,这是第一个基于个人水平的接触数据对Covid-19感染有效推断的模型;大多数流行病模型是宏观模型,这些模型在整个人群中推理。 Crisp的实现可在Python和C ++中获得,网址为https://github.com/zalandoresearch/crisp。
translated by 谷歌翻译
Early on during a pandemic, vaccine availability is limited, requiring prioritisation of different population groups. Evaluating vaccine allocation is therefore a crucial element of pandemics response. In the present work, we develop a model to retrospectively evaluate age-dependent counterfactual vaccine allocation strategies against the COVID-19 pandemic. To estimate the effect of allocation on the expected severe-case incidence, we employ a simulation-assisted causal modelling approach which combines a compartmental infection-dynamics simulation, a coarse-grained, data-driven causal model and literature estimates for immunity waning. We compare Israel's implemented vaccine allocation strategy in 2021 to counterfactual strategies such as no prioritisation, prioritisation of younger age groups or a strict risk-ranked approach; we find that Israel's implemented strategy was indeed highly effective. We also study the marginal impact of increasing vaccine uptake for a given age group and find that increasing vaccinations in the elderly is most effective at preventing severe cases, whereas additional vaccinations for middle-aged groups reduce infections most effectively. Due to its modular structure, our model can easily be adapted to study future pandemics. We demonstrate this flexibility by investigating vaccine allocation strategies for a pandemic with characteristics of the Spanish Flu. Our approach thus helps evaluate vaccination strategies under the complex interplay of core epidemic factors, including age-dependent risk profiles, immunity waning, vaccine availability and spreading rates.
translated by 谷歌翻译
在接触网络上重建缺失的流行扩展信息可能是预防和遏制策略必不可少的。例如,鉴定和警告感染性但无症状的个体(例如,手动接触跟踪)有助于在Covid-19流行中含有爆发。可能的流行病级联的数量通常随着所涉及的个体的数量呈指数级增长。流行病过程中推理问题所带来的挑战源于难以识别与证据兼容的几乎可忽略的子集(例如,医学测试)。在这里,我们提出了一种新的生成神经网络框架,可以对与观察相兼容的最可能的感染级联来进行样本。此外,该框架可以推断治疗感染扩散的参数。所提出的方法从患者零问题,风险评估和传染性参数的现有方法获得更好或比较的结果,综合性和实际情况中的传染性参数,如在工作场所和医院传播感染。
translated by 谷歌翻译
Multiple lines of evidence strongly suggest that infection hotspots, where a single individual infects many others, play a key role in the transmission dynamics of COVID-19. However, most of the existing epidemiological models fail to capture this aspect by neither representing the sites visited by individuals explicitly nor characterizing disease transmission as a function of individual mobility patterns. In this work, we introduce a temporal point process modeling framework that specifically represents visits to the sites where individuals get in contact and infect each other. Under our model, the number of infections caused by an infectious individual naturally emerges to be overdispersed. Using an efficient sampling algorithm, we demonstrate how to estimate the transmission rate of infectious individuals at the sites they visit and in their households using Bayesian optimization and longitudinal case data. Simulations using fine-grained and publicly available demographic data and site locations from Bern, Switzerland showcase the flexibility of our framework. To facilitate research and analyses of other cities and regions, we release an open-source implementation of our framework.
translated by 谷歌翻译
Strategic test allocation plays a major role in the control of both emerging and existing pandemics (e.g., COVID-19, HIV). Widespread testing supports effective epidemic control by (1) reducing transmission via identifying cases, and (2) tracking outbreak dynamics to inform targeted interventions. However, infectious disease surveillance presents unique statistical challenges. For instance, the true outcome of interest - one's positive infectious status, is often a latent variable. In addition, presence of both network and temporal dependence reduces the data to a single observation. As testing entire populations regularly is neither efficient nor feasible, standard approaches to testing recommend simple rule-based testing strategies (e.g., symptom based, contact tracing), without taking into account individual risk. In this work, we study an adaptive sequential design involving n individuals over a period of {\tau} time-steps, which allows for unspecified dependence among individuals and across time. Our causal target parameter is the mean latent outcome we would have obtained after one time-step, if, starting at time t given the observed past, we had carried out a stochastic intervention that maximizes the outcome under a resource constraint. We propose an Online Super Learner for adaptive sequential surveillance that learns the optimal choice of tests strategies over time while adapting to the current state of the outbreak. Relying on a series of working models, the proposed method learns across samples, through time, or both: based on the underlying (unknown) structure in the data. We present an identification result for the latent outcome in terms of the observed data, and demonstrate the superior performance of the proposed strategy in a simulation modeling a residential university environment during the COVID-19 pandemic.
translated by 谷歌翻译
流行病学中的数学模型是一种不可或缺的工具,可以确定传染病的动态和重要特征。除了他们的科学价值之外,这些模型通常用于在正在进行的爆发期间提供政治决策和干预措施。然而,通过将复杂模型连接到真实数据来可靠地推断正在进行的爆发的动态仍然很难,并且需要费力的手动参数拟合或昂贵的优化方法,这些方法必须从划痕中重复给定模型的每个应用。在这项工作中,我们用专门的神经网络的流行病学建模的新组合来解决这个问题。我们的方法需要两个计算阶段:在初始训练阶段中,描述该流行病的数学模型被用作神经网络的教练,该主管是关于全球可能疾病动态的全球知识。在随后的推理阶段,训练有素的神经网络处理实际爆发的观察到的数据,并且揭示了模型的参数,以便实际地再现观察到的动态并可可靠地预测未来的进展。通过其灵活的框架,我们的仿真方法适用于各种流行病学模型。此外,由于我们的方法是完全贝叶斯的,它旨在纳入所有可用的关于合理参数值的先前知识,并返回这些参数上的完整关节后部分布。我们的方法在德国的早期Covid-19爆发阶段的应用表明,我们能够获得可靠的概率估计对重要疾病特征,例如生成时间,未检测到的感染部分,症状发作前的传播可能性,以及报告延迟非常适中的现实观测。
translated by 谷歌翻译
Covid-19大流行强调了对疫情模型的强大了解的需要。目前的流行模型被归类为机械或非机械方式:机械模型对疾病的动态作出明确的假设,而非机械模型对观察时间序列的形式做出假设。在这里,我们介绍了一种简单的混合模型,该模型桥接两种方法,同时保持两者的益处。该模型表示作为高斯曲线的混合的情况和死亡率的时间序列,提供灵活的函数类,与传统的机制模型相比从数据中学习。虽然该模型是非机械的,但我们表明它是基于网络SIR框架的随机过程的自然结果。这允许学习参数与类似的非机械模型相比,使用更有意义的解释,并且我们使用在Covid-19流行期间收集的辅助移动性数据来验证解释。我们提供了一种简单的学习算法来识别模型参数并建立显示模型可以从数据有效学习模型的理论结果。凭经验,我们发现模型具有低预测误差。该模型可在CovidPredictions中提供.Mit.edu。最终,这使我们能够系统地了解干预措施对Covid-19的影响,这对于开发数据驱动的解决方案来控制流行病的解决方案至关重要。
translated by 谷歌翻译
COVID-19的大流行提出了对多个领域决策者的流行预测的重要性,从公共卫生到整个经济。虽然预测流行进展经常被概念化为类似于天气预测,但是它具有一些关键的差异,并且仍然是一项非平凡的任务。疾病的传播受到人类行为,病原体动态,天气和环境条件的多种混杂因素的影响。由于政府公共卫生和资助机构的倡议,捕获以前无法观察到的方面的丰富数据来源的可用性增加了研究的兴趣。这尤其是在“以数据为中心”的解决方案上进行的一系列工作,这些解决方案通过利用非传统数据源以及AI和机器学习的最新创新来增强我们的预测能力的潜力。这项调查研究了各种数据驱动的方法论和实践进步,并介绍了一个概念框架来导航它们。首先,我们列举了与流行病预测相关的大量流行病学数据集和新的数据流,捕获了各种因素,例如有症状的在线调查,零售和商业,流动性,基因组学数据等。接下来,我们将讨论关注最近基于数据驱动的统计和深度学习方法的方法和建模范式,以及将机械模型知识域知识与统计方法的有效性和灵活性相结合的新型混合模型类别。我们还讨论了这些预测系统的现实部署中出现的经验和挑战,包括预测信息。最后,我们重点介绍了整个预测管道中发现的一些挑战和开放问题。
translated by 谷歌翻译
在本文中,我们提出了一种算法,用于估计聚合观测的时间均匀隐马尔可夫模型的参数。当只有每次步骤的个人数量的人口级别计数时,都会出现此问题,从中寻求学习单个隐藏的马尔可夫模型。我们的算法是在期望 - 最大化和最近提出的聚合推理算法,池中信念传播的建立。与现有方法相比,诸如具有非线性信念传播的期望最大化,我们的算法表现出收敛保证。此外,当记录与单个单独的观察时,我们的学习框架自然地降低了标准的BAUM-Welch学习算法。我们进一步扩展了我们的学习算法以处理具有连续观察的HMM。我们的算法的功效在各种数据集上进行了演示。
translated by 谷歌翻译
了解Covid-19的传播是众多研究的主题,突出了可靠的流行模型的重要性。在这里,我们使用带有时间协变量的潜在霍克斯工艺引入了一种新型的流行模型,用于建模感染。与其他模型不同,我们通过基础霍克斯过程驱动的概率分布进行对报告的案例进行建模。通过霍克斯过程对感染进行建模,使我们能够估计受感染的人感染的人。我们提出了一个内核密度颗粒滤波器(KDPF),以推断潜在病例和繁殖数,并在不久的将来预测新病例。计算工作与感染的数量成正比,使使用粒子滤波器类型算法(例如KDPF)成为可能。我们证明了拟议的算法对合成数据集的性能,而Covid-19报告了英国各个地方当局的病例,并将我们的模型基于替代方法。
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
具有微分方程的机械模型是机器学习科学应用的关键组成部分。这种模型中的推论通常在计算上是要求的,因为它涉及重复求解微分方程。这里的主要问题是数值求解器很难与标准推理技术结合使用。概率数字中的最新工作已经开发了一类新的用于普通微分方程(ODE)的求解器,该方程式直接用贝叶斯过滤词来表达解决方案过程。我们在这里表明,这允许将此类方法与概念和数值易于宽容地结合在一起,并在ODE本身中与潜在力模型结合在一起。然后,可以在潜在力和ode溶液上执行近似贝叶斯推断,并在一个线性复杂度传递中进行扩展的卡尔曼滤波器 /更平滑的线性复杂度,也就是说,以计算单个ODE解决方案为代价。我们通过培训表明了算法的表达和性能,以及其他训练中的非参数SIRD模型。
translated by 谷歌翻译
COVID-19的传播表明,在不同的城市和社区之间,传播风险模式不是同质的,各种异质特征会影响传播轨迹。因此,对于预测性大流行监测,至关重要的是,在城市和社区中探索潜在的异质特征,以区分其特定的大流行扩散轨迹。为此,这项研究创建了一个网络嵌入模型,捕获跨县的访问网络以及异质特征,以根据其大流行传播轨迹来发现美国县的集群。我们从3月3日至2020年6月29日(初始波浪)收集了2,787个县的位置智能特征。其次,我们构建了一个人类访问网络,该网络将县特征作为节点属性和县之间的访问作为网络边缘。我们的归因网络嵌入方法整合了跨县访问网络的类型学特征以及异质性特征。我们对属性网络嵌入进行了聚类分析,以揭示与四个县群相对应的差异风险轨迹的四种原型。随后,我们确定了四个功能是原型之间独特的传输风险模式的重要特征。归因的网络嵌入方法和发现识别并解释了整个县的非殖民性大流行风险轨迹进行预测性大流行监测。这项研究还为大流行分析的基于数据驱动和深度学习的方法有助于补充大流行病政策分析的标准流行病学模型。
translated by 谷歌翻译
潜在位置网络模型是网络科学的多功能工具;应用程序包括集群实体,控制因果混淆,并在未观察的图形上定义前提。估计每个节点的潜在位置通常是贝叶斯推理问题的群体,吉布斯内的大都市是最流行的近似后分布的工具。然而,众所周知,GIBBS内的大都市对于大型网络而言是低效;接受比计算成本昂贵,并且所得到的后绘高度相关。在本文中,我们提出了一个替代的马尔可夫链蒙特卡罗战略 - 使用分裂哈密顿蒙特卡罗和萤火虫蒙特卡罗的组合定义 - 利用后部分布的功能形式进行更有效的后退计算。我们展示了这些战略在吉布斯和综合网络上的其他算法中优于大都市,以及学区的教师和工作人员的真正信息共享网络。
translated by 谷歌翻译
由于Covid-19-19疫苗可用,因此没有研究量化不同的灾难疏散策略如何减轻避难所中的大流行风险。因此,我们应用了一个年龄结构化的流行病学模型,称为易感性暴露感染(SEIR)模型,以研究台湾不同的疫苗摄取水平以及在台湾实施的转移方案在多大程度上降低了感染和延迟流行峰值的情况。台湾的转移协议涉及转移因曝光而自我占用的人,从而阻止了他们与集体庇护所的普通公众融合。转移方案,结合足够的疫苗摄取,可以减少相对于没有这种策略的情况,相对于场景,感染的最大数量和延迟爆发。当所有暴露的人的转移是不可能的,或者疫苗的摄取不足时,转移方案仍然很有价值。此外,一组主要由年轻人人口组成的撤离者往往会早日出现大流行峰值,并且在实施转移方案时,多数老年人组的感染比多数老年人多。但是,当不执行转移方案时,多数老年人群体比大多数年轻成人群体高达20%。
translated by 谷歌翻译
机械模拟器是流行病学的必不可少的工具,可以在不同条件下探索复杂,动态感染的行为并导航不确定的环境。基于ODE的模型是能够快速模拟且可实现基于梯度的优化的主要范式,但可以简化有关人群同质性的假设。基于代理的模型(ABM)是一种越来越流行的替代范式,可以代表接触相互作用的异质性,并具有颗粒状细节和个人行为的代理。但是,常规的ABM框架没有可区分的,并且在可伸缩性方面提出了挑战。因此,将它们连接到辅助数据源是非平凡的。在本文中,我们介绍了GradABM,这是ABMS的新型可扩展,快速和可区分的设计。 GradABM在商品硬件上几秒钟内运行模拟,并启用快速前进和可区分的反向模拟。这使得可以与深度神经网络合并并无缝整合异质数据源以帮助校准,预测和政策评估。我们通过对实际Covid-19和流感数据集进行了广泛的实验来证明GradABM的功效。我们很乐观,这项工作将使ABM和AI社区更加紧密。
translated by 谷歌翻译
我们考虑贝叶斯型优化函数网络的输出,其中每个功能都将其作为输入其父节点的输出,并且网络在其位置需要评估。例如,在强化学习,工程设计和制造中出现了这些问题。虽然标准贝叶斯优化方法只观察到最终输出,但我们的方法通过利用前者忽略的信息来提供更大的查询效率:网络内中间输出。这是通过使用高斯过程建模网络的节点来实现的实现,并选择要使用的点作为我们的采集功能来评估点,所以在物镜上的隐含后续计算的预期改进。尽管这种后部的非高斯性质阻止了以封闭形式计算我们的采集功能,但我们表明它可以通过样本平均近似有效地最大化。此外,我们证明我们的方法是渐近的,这意味着它发现全球最佳解决方案随着评估的数量增长到无穷大,因此概括了预期改进的先前已知的收敛结果。值得注意的是,即使我们的方法可能无法谨慎地评估域,而是利用问题结构留下未开发的区域。最后,我们表明我们的方法在几个合成和现实世界问题中显着优于标准贝叶斯优化方法。
translated by 谷歌翻译
贝叶斯网络是一种图形模型,用于编码感兴趣的变量之间的概率关系。当与统计技术结合使用时,图形模型对数据分析具有几个优点。一个,因为模型对所有变量中的依赖性进行编码,因此它易于处理缺少某些数据条目的情况。二,贝叶斯网络可以用于学习因果关系,因此可以用来获得关于问题域的理解并预测干预的后果。三,因为该模型具有因果和概率语义,因此是结合先前知识(通常出现因果形式)和数据的理想表示。四,贝叶斯网络与贝叶斯网络的统计方法提供了一种有效和原则的方法,可以避免数据过剩。在本文中,我们讨论了从先前知识构建贝叶斯网络的方法,总结了使用数据来改善这些模型的贝叶斯统计方法。关于后一项任务,我们描述了学习贝叶斯网络的参数和结构的方法,包括使用不完整数据学习的技术。此外,我们还联系了贝叶斯网络方法,以学习监督和无监督学习的技术。我们说明了使用真实案例研究的图形建模方法。
translated by 谷歌翻译
背景:COVID-19患者的早期检测和隔离对于成功实施缓解策略并最终遏制疾病扩散至关重要。由于在每个国家 /地区进行的每日共同测试数量有限,因此模拟COVID-19的扩散以及目前每种缓解策略的潜在影响仍然是管理医疗保健系统和指导决策者的最有效方法之一。方法:我们介绍了Covidhunter,这是一种灵活而准确的Covid-19爆发模拟模型,该模型评估了应用于区域的当前缓解措施,并提供有关即将进行的缓解措施的强度的建议。 Covidhunter的关键思想是通过模拟考虑到外部因素的影响,例如环境条件(例如气候,温度,湿度,湿度)和缓解措施。结果:使用瑞士作为案例研究,Covidhunter估计,如果政策制定者放宽30天的缓解措施50%,那么医院病床的日常容量和每日死亡人数平均每天的死亡人数平均增加了5.1倍,则会增加5.1倍谁可能会占用ICU床和呼吸机一段时间。与现有模型不同,Covidhunter模型可以准确监视,并预测COVID-19造成的病例,住院和死亡人数。我们的模型可以灵活地配置,并且可以易于修改,以在不同的环境条件和缓解措施下对不同方案进行建模。可用性:我们在https://github.com/cmu-safari/covidhunter上发布了covidhunter实现的源代码,并展示如何在任何情况下灵活配置我们的模型,并轻松地将其扩展为不同的度量和条件。
translated by 谷歌翻译
我们将反应性消息传递(RMP)作为框架,用于在概率模型的因子图表示中执行基于时间表,鲁棒和可扩展的消息通过的基于消息传递的推断。 RMP基于反应性编程风格,该样式仅描述因子图中的节点如何对连接节点中的更改作出反应。没有固定消息传递计划提高推理过程的稳健性,可伸缩性和执行时间。我们还存在ReactiveMp.jl,这是一个Julia包,用于通过最小化约束的自由能实现RMP。通过用户定义的本地表单和分解约束对变分后部分布的结构,ReastiveMp.jl执行混合消息传递算法,包括信仰传播,变分消息通过,期望传播和期望最大化更新规则。实验结果表明,与其他概率模型的贝叶斯推断的其他朱莉娅封装相比,基于Reactivemp的RMP的性能提高。特别是,我们表明RMP框架能够为大型概率状态空间模型运行贝叶斯人推断,并在标准膝上型计算机上具有数十万个随机变量。
translated by 谷歌翻译