在监控和搜索和救援应用程序中,重要的是在低端设备上实时执行多目标跟踪(MOT)。今天的MOT解决方案采用深度神经网络,往往具有高计算复杂性。识别帧大小对跟踪性能的影响,我们提出了深度,一种模型不可知框架尺寸选择方法,可在现有的全卷积网络基跟踪器之上进行操作,以加速跟踪吞吐量。在培训阶段,我们将可检测性分数纳入单次跟踪器架构,使得DeepScale以自我监督的方式学习不同帧大小的表示估计。在推理期间,它可以根据基于用户控制参数根据视觉内容的复杂性来调整帧大小。为了利用边缘服务器上的计算资源,我们提出了两个计算分区模式,即仅使用自适应帧大小传输和边缘服务器辅助跟踪仅适用于MOT,即边缘服务器。 MOT数据集的广泛实验和基准测试证明了深度的有效性和灵活性。与最先进的追踪器相比,DeepScale ++,DeepScale的变种实现1.57倍加速,仅在一个配置中的MOT15数据集上跟踪准确性。我们已经实现和评估了DeepScale ++,以及由NVIDIA JETSON TX2板和GPU服务器组成的小型测试平台上所提出的计算分区方案。实验显示与仅服务器或智能相机的解决方案相比跟踪性能和延迟之间的非琐碎权衡。
translated by 谷歌翻译
Video, as a key driver in the global explosion of digital information, can create tremendous benefits for human society. Governments and enterprises are deploying innumerable cameras for a variety of applications, e.g., law enforcement, emergency management, traffic control, and security surveillance, all facilitated by video analytics (VA). This trend is spurred by the rapid advancement of deep learning (DL), which enables more precise models for object classification, detection, and tracking. Meanwhile, with the proliferation of Internet-connected devices, massive amounts of data are generated daily, overwhelming the cloud. Edge computing, an emerging paradigm that moves workloads and services from the network core to the network edge, has been widely recognized as a promising solution. The resulting new intersection, edge video analytics (EVA), begins to attract widespread attention. Nevertheless, only a few loosely-related surveys exist on this topic. A dedicated venue for collecting and summarizing the latest advances of EVA is highly desired by the community. Besides, the basic concepts of EVA (e.g., definition, architectures, etc.) are ambiguous and neglected by these surveys due to the rapid development of this domain. A thorough clarification is needed to facilitate a consensus on these concepts. To fill in these gaps, we conduct a comprehensive survey of the recent efforts on EVA. In this paper, we first review the fundamentals of edge computing, followed by an overview of VA. The EVA system and its enabling techniques are discussed next. In addition, we introduce prevalent frameworks and datasets to aid future researchers in the development of EVA systems. Finally, we discuss existing challenges and foresee future research directions. We believe this survey will help readers comprehend the relationship between VA and edge computing, and spark new ideas on EVA.
translated by 谷歌翻译
已经提出了高效和自适应计算机视觉系统以使计算机视觉任务,例如图像分类和对象检测,针对嵌入或移动设备进行了优化。这些解决方案最近的起源,专注于通过设计具有近似旋钮的自适应系统来优化模型(深神经网络,DNN)或系统。尽管最近的几项努力,但我们表明现有解决方案遭受了两个主要缺点。首先,系统不考虑模型的能量消耗,同时在制定要运行的模型的决定时。其次,由于其他共同居民工作负载,评估不考虑设备上的争用的实际情况。在这项工作中,我们提出了一种高效和自适应的视频对象检测系统,这是联合优化的精度,能量效率和延迟。底层Virtuoso是一个多分支执行内核,它能够在精度 - 能量 - 延迟轴上的不同运行点处运行,以及轻量级运行时调度程序,以选择最佳的执行分支以满足用户要求。要与Virtuoso相当比较,我们基准于15件最先进的或广泛使用的协议,包括更快的R-CNN(FRCNN),YOLO V3,SSD,培训台,SELSA,MEGA,REPP,FastAdapt和我们的内部FRCNN +,YOLO +,SSD +和高效+(我们的变体具有增强的手机效率)的自适应变体。通过这种全面的基准,Virtuoso对所有上述协议显示出优势,在NVIDIA Jetson Mobile GPU上的每一项效率水平上引领精度边界。具体而言,Virtuoso的准确性为63.9%,比一些流行的物体检测模型高于10%,51.1%,yolo为49.5%。
translated by 谷歌翻译
先进的可穿戴设备越来越多地利用高分辨率多摄像头系统。作为用于处理所得到的图像数据的最先进的神经网络是计算要求的,对于利用第五代(5G)无线连接和移动边缘计算,已经越来越感兴趣,以将该处理卸载到云。为了评估这种可能性,本文提出了一个详细的仿真和评估,用于5G无线卸载,用于对象检测,在一个名为Vis4ion的强大新型智能可穿戴物中,用于盲目损害(BVI)。目前的Vis4ion系统是一种具有高分辨率摄像机,视觉处理和触觉和音频反馈的仪表簿。本文认为将相机数据上载到移动边缘云以执行实时对象检测并将检测结果传输回可穿戴。为了确定视频要求,纸张评估视频比特率和分辨率对物体检测精度和范围的影响。利用与BVI导航相关的标记对象的新街道场景数据集进行分析。视觉评估与详细的全堆栈无线网络仿真结合,以确定吞吐量的分布和延迟,具有来自城市环境中的新高分辨率3D模型的实际导航路径和射线跟踪。为了比较,无线仿真考虑了标准的4G长期演进(LTE)载波和高速度5G毫米波(MMWAVE)载波。因此,该工作提供了对具有高带宽和低延迟要求的应用中的MMWAVE连接的边缘计算的彻底和现实评估。
translated by 谷歌翻译
近年来,多个对象跟踪引起了研究人员的极大兴趣,它已成为计算机视觉中的趋势问题之一,尤其是随着自动驾驶的最新发展。 MOT是针对不同问题的关键视觉任务之一,例如拥挤的场景中的闭塞,相似的外观,小物体检测难度,ID切换等,以应对这些挑战,因为研究人员试图利用变压器的注意力机制,与田径的相互关系,与田径的相互关系,图形卷积神经网络,与暹罗网络不同帧中对象的外观相似性,他们还尝试了基于IOU匹配的CNN网络,使用LSTM的运动预测。为了将这些零散的技术在雨伞下采用,我们研究了过去三年发表的一百多篇论文,并试图提取近代研究人员更关注的技术来解决MOT的问题。我们已经征集了许多应用,可能性以及MOT如何与现实生活有关。我们的评论试图展示研究人员使用过时的技术的不同观点,并为潜在的研究人员提供了一些未来的方向。此外,我们在这篇评论中包括了流行的基准数据集和指标。
translated by 谷歌翻译
移动设备通过深神经网络(DNN)越来越依赖对象检测(OD)来执行关键任务。由于它们的复杂性高,这些DNN的执行需要过度的时间和能量。低复杂性对象跟踪(OT)可以与OD一起使用,后者定期应用后,以生成“新鲜”的跟踪参考。然而,使用OD处理的帧产生大的延迟,这可以使参考延迟过时并降低跟踪质量。这里,我们建议在这种情况下使用边缘计算,并在对大OD延迟中建立并行OT(在移动设备上)和OD(处于边缘服务器)的进程。我们提出Katch-Up,一种新型跟踪机制,可提高系统弹性过度OD延迟。但是,虽然Katch-up显着提高了性能,但它也增加了移动设备的计算负荷。因此,我们设计SmartDet,基于深度加强学习(DRL)的低复杂性控制器,了解资源利用率和OD性能之间的权衡。 SmartDet作为输入上下文相关信息与当前视频内容相关的信息和当前网络条件,以优化OD卸载的频率和类型,以及Katch-Up利用率。我们在通过Wi-Fi链路连接的GTX 980 TI为移动设备和GTX 980 TI,广泛地评估SmartDet。实验结果表明,SmartDET在跟踪性能 - 平均召回(MAR)和资源使用之间实现了最佳平衡。关于具有完全Katch-Upusage和最大渠道使用的基线,我们仍然将MAR增加4%,同时使用50%的通道和与Katch-Up相关的30%电力资源。对于使用最小资源的固定策略,我们在使用katch-up在框架的1/3上时,我们将MAR增加20%。
translated by 谷歌翻译
Tracking has traditionally been the art of following interest points through space and time. This changed with the rise of powerful deep networks. Nowadays, tracking is dominated by pipelines that perform object detection followed by temporal association, also known as tracking-by-detection. We present a simultaneous detection and tracking algorithm that is simpler, faster, and more accurate than the state of the art. Our tracker, CenterTrack, applies a detection model to a pair of images and detections from the prior frame. Given this minimal input, CenterTrack localizes objects and predicts their associations with the previous frame. That's it. CenterTrack is simple, online (no peeking into the future), and real-time. It achieves 67.8% MOTA on the MOT17 challenge at 22 FPS and 89.4% MOTA on the KITTI tracking benchmark at 15 FPS, setting a new state of the art on both datasets. CenterTrack is easily extended to monocular 3D tracking by regressing additional 3D attributes. Using monocular video input, it achieves 28.3% AMOTA@0.2 on the newly released nuScenes 3D tracking benchmark, substantially outperforming the monocular baseline on this benchmark while running at 28 FPS.
translated by 谷歌翻译
基于无人机(UAV)基于无人机的视觉对象跟踪已实现了广泛的应用,并且由于其多功能性和有效性而引起了智能运输系统领域的越来越多的关注。作为深度学习革命性趋势的新兴力量,暹罗网络在基于无人机的对象跟踪中闪耀,其准确性,稳健性和速度有希望的平衡。由于开发了嵌入式处理器和深度神经网络的逐步优化,暹罗跟踪器获得了广泛的研究并实现了与无人机的初步组合。但是,由于无人机在板载计算资源和复杂的现实情况下,暹罗网络的空中跟踪仍然在许多方面都面临严重的障碍。为了进一步探索基于无人机的跟踪中暹罗网络的部署,这项工作对前沿暹罗跟踪器进行了全面的审查,以及使用典型的无人机板载处理器进行评估的详尽无人用分析。然后,进行板载测试以验证代表性暹罗跟踪器在现实世界无人机部署中的可行性和功效。此外,为了更好地促进跟踪社区的发展,这项工作分析了现有的暹罗跟踪器的局限性,并进行了以低弹片评估表示的其他实验。最后,深入讨论了基于无人机的智能运输系统的暹罗跟踪的前景。领先的暹罗跟踪器的统一框架,即代码库及其实验评估的结果,请访问https://github.com/vision4robotics/siamesetracking4uav。
translated by 谷歌翻译
通过在图像传感器设计中加入可编程的兴趣区域(ROI)读数来提高嵌入式视觉系统的能量效率的巨大范围。在这项工作中,我们研究如何利用ROI可编程性,以便通过预期ROI将位于未来帧中的位置并在该区域之外切换像素来进行跟踪应用程序。我们将ROI预测的该过程和对应的传感器配置称为自适应限制。我们的自适应数据采样算法包括对象检测器和ROI预测器(卡尔曼滤波器),其结合地操作以优化视觉管道的能量效率,其结束任务是对象跟踪。为了进一步促进现实生活中的自适应算法的实施,我们选择候选算法并将其映射到FPGA上。利用Xilinx血管AI工具,我们设计并加速了基于YOLO对象探测器的自适应数据采样算法。为了进一步改进算法的部署后,我们在OTB100和LASOT数据集中评估了几个竞争的基线。我们发现将ECO跟踪器与Kalman滤波器耦合,在OTB100和Lasot Datasets上具有0.4568和0.3471的竞争性AUC分数。此外,该算法的功率效率与另一个基线优于相同的情况,并且在几个外部的情况下。基于ECO的算法在两个数据集上发生大约4W的功耗,而基于YOLO的方法需要大约6 W的功耗(根据我们的功耗模型)。在精度延迟权衡方面,基于ECO的算法在管理达到竞争跟踪精度的同时提供近实时性能(19.23 FPS)。
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
边缘计算广泛用于视频分析。为了减轻准确性和成本之间的固有张力,已经提出了各种视频分析管道,以优化GPU在边缘节点上的使用。但是,我们发现,由于视频内容的变化,在管道的不同位置的视频内容变化,亚次采样和过滤,因此为边缘节点提供的GPU计算资源通常被低估了。与模型和管道优化相反,在这项工作中,我们使用非确定性和分散的闲置GPU资源研究了机会数据增强的问题。具体而言,我们提出了一个特定于任务的歧视和增强模块以及一种模型感知的对抗性训练机制,提供了一种以准确有效的方式识别和转换特定于视频管道的低质量图像的方法。在延迟和GPU资源限制下,进一步开发了多个EXIT模型结构和资源感知调度程序,以做出在线增强决策和细粒度的执行。多个视频分析管道和数据集的实验表明,通过明智地分配少量的空闲资源,这些框架上倾向于通过增强而产生更大的边际收益,我们的系统将DNN对象检测准确性提高了7.3-11.3 \%,而不会产生任何潜行成本。
translated by 谷歌翻译
多对象跟踪(MOT)的目标是检测和跟踪场景中的所有对象,同时为每个对象保留唯一的标识符。在本文中,我们提出了一种新的可靠的最新跟踪器,该跟踪器可以结合运动和外观信息的优势,以及摄像机运动补偿以及更准确的Kalman滤波器状态矢量。我们的新跟踪器在Mot17和Mot20测试集的Motchallenge [29,11]的数据集[29,11]中,Bot-Sort-Reid排名第一,就所有主要MOT指标而言:MOTA,IDF1和HOTA。对于Mot17:80.5 Mota,80.2 IDF1和65.0 HOTA。源代码和预培训模型可在https://github.com/niraharon/bot-sort上找到
translated by 谷歌翻译
宽阔的区域运动图像(瓦米)产生具有大量极小物体的高分辨率图像。目标物体在连续帧中具有大的空间位移。令人讨厌的图像的这种性质使对象跟踪和检测具有挑战性。在本文中,我们介绍了我们基于深度神经网络的组合对象检测和跟踪模型,即热图网络(HM-Net)。 HM-Net明显快于最先进的帧差异和基于背景减法的方法,而不会影响检测和跟踪性能。 HM-Net遵循基于对象的联合检测和跟踪范式。简单的热图的预测支持无限数量的同时检测。所提出的方法使用来自前一帧的两个连续帧和物体检测热图作为输入,这有助于帧之间的HM-Net监视器时空变化并跟踪先前预测的对象。尽管重复使用先前的物体检测热图作为基于生命的反馈的存储器元件,但它可能导致假阳性检测的意外浪涌。为了增加对误报和消除低置信度检测的方法的稳健性,HM-Net采用新的反馈滤波器和高级数据增强。 HM-Net优于最先进的WAMI移动对象检测和跟踪WPAFB数据集的跟踪方法,其96.2%F1和94.4%地图检测分数,同时在同一数据集上实现61.8%的地图跟踪分数。这种性能对应于F1,6.1%的地图分数的增长率为2.1%,而在追踪最先进的地图分数的地图分数为9.5%。
translated by 谷歌翻译
由于卷积神经网络(CNN)在过去的十年中检测成功,多对象跟踪(MOT)通过检测方法的使用来控制。随着数据集和基础标记网站的发布,研究方向已转向在跟踪时在包括重新识别对象的通用场景(包括重新识别(REID))上的最佳准确性。在这项研究中,我们通过提供专用的行人数据集并专注于对性能良好的多对象跟踪器的深入分析来缩小监视的范围)现实世界应用的技术。为此,我们介绍SOMPT22数据集;一套新的,用于多人跟踪的新套装,带有带注释的简短视频,该视频从位于杆子上的静态摄像头捕获,高度为6-8米,用于城市监视。与公共MOT数据集相比,这提供了室外监视的MOT的更为集中和具体的基准。我们分析了该新数据集上检测和REID网络的使用方式,分析了将MOT跟踪器分类为单发和两阶段。我们新数据集的实验结果表明,SOTA远非高效率,而单一跟踪器是统一快速执行和准确性的良好候选者,并具有竞争性的性能。该数据集将在以下网址提供:sompt22.github.io
translated by 谷歌翻译
The recent trend in multiple object tracking (MOT) is jointly solving detection and tracking, where object detection and appearance feature (or motion) are learned simultaneously. Despite competitive performance, in crowded scenes, joint detection and tracking usually fail to find accurate object associations due to missed or false detections. In this paper, we jointly model counting, detection and re-identification in an end-to-end framework, named CountingMOT, tailored for crowded scenes. By imposing mutual object-count constraints between detection and counting, the CountingMOT tries to find a balance between object detection and crowd density map estimation, which can help it to recover missed detections or reject false detections. Our approach is an attempt to bridge the gap of object detection, counting, and re-Identification. This is in contrast to prior MOT methods that either ignore the crowd density and thus are prone to failure in crowded scenes, or depend on local correlations to build a graphical relationship for matching targets. The proposed MOT tracker can perform online and real-time tracking, and achieves the state-of-the-art results on public benchmarks MOT16 (MOTA of 77.6), MOT17 (MOTA of 78.0%) and MOT20 (MOTA of 70.2%).
translated by 谷歌翻译
深神网络的对象探测器正在不断发展,并用于多种应用程序,每个应用程序都有自己的要求集。尽管关键安全应用需要高准确性和可靠性,但低延迟任务需要资源和节能网络。不断提出了实时探测器,在高影响现实世界中是必需的,但是它们过分强调了准确性和速度的提高,而其他功能(例如多功能性,鲁棒性,资源和能源效率)则被省略。现有网络的参考基准不存在,设计新网络的标准评估指南也不存在,从而导致比较模棱两可和不一致的比较。因此,我们对广泛的数据集进行了多个实时探测器(基于锚点,关键器和变压器)的全面研究,并报告了一系列广泛指标的结果。我们还研究了变量,例如图像大小,锚固尺寸,置信阈值和架构层对整体性能的影响。我们分析了检测网络的鲁棒性,以防止分配变化,自然腐败和对抗性攻击。此外,我们提供了校准分析来评估预测的可靠性。最后,为了强调现实世界的影响,我们对自动驾驶和医疗保健应用进行了两个独特的案例研究。为了进一步衡量关键实时应用程序中网络的能力,我们报告了在Edge设备上部署检测网络后的性能。我们广泛的实证研究可以作为工业界对现有网络做出明智选择的指南。我们还希望激发研究社区的设计和评估网络的新方向,该网络着重于更大而整体的概述,以实现深远的影响。
translated by 谷歌翻译
数据关联是遵循逐个检测范式跟踪的任何多个对象跟踪方法(MOT)方法的关键组件。为了生成完整的轨迹,这种方法采用数据关联过程来在每个时间步长期间建立检测和现有目标之间的分配。最近的数据关联方法试图解决多维线性分配任务或网络流量最小化问题,或者要么通过多个假设跟踪解决。但是,在推论过程中,每个序列帧都需要计算最佳分配的优化步骤,并在任何给定的解决方案中添加显着的计算复杂性。为此,在这项工作的背景下,我们介绍了基于变压器的作业决策网络(TADN),该决策网络(TADN)可以解决数据关联,而无需在推理过程中进行任何明确的优化。特别是,TADN可以在网络的单个正向传球中直接推断检测和活动目标之间的分配对。我们已经将TADN整合到了一个相当简单的MOT框架中,我们设计了一种新颖的培训策略,用于有效的端到端培训,并在两个流行的基准上展示了我们在线视觉跟踪MOT的高潜力,即Mot17和Mot17和UA-DETRAC。我们提出的方法在大多数评估指标中的最新方法都优于最先进的方法,尽管它作为跟踪器的简单性质缺乏重要的辅助组件,例如闭塞处理或重新识别。我们的方法的实现可在https://github.com/psaltaath/tadn-mot上公开获得。
translated by 谷歌翻译
通过流行和通用的计算机视觉挑战来判断,如想象成或帕斯卡VOC,神经网络已经证明是在识别任务中特别准确。然而,最先进的准确性通常以高计算价格出现,需要硬件加速来实现实时性能,而使用案例(例如智能城市)需要实时分析固定摄像机的图像。由于网络带宽的数量,这些流将生成,我们不能依赖于卸载计算到集中云。因此,预期分布式边缘云将在本地处理图像。但是,边缘是由性质资源约束的,这给了可以执行的计算复杂性限制。然而,需要边缘与准确的实时视频分析之间的会面点。专用轻量级型号在每相机基础上可能有所帮助,但由于相机的数量增长,除非该过程是自动的,否则它很快就会变得不可行。在本文中,我们展示并评估COVA(上下文优化的视频分析),这是一个框架,可以帮助在边缘相机中自动专用模型专业化。 COVA通过专业化自动提高轻质模型的准确性。此外,我们讨论和审查过程中涉及的每个步骤,以了解每个人所带来的不同权衡。此外,我们展示了静态相机的唯一假设如何使我们能够制定一系列考虑因素,这大大简化了问题的范围。最后,实验表明,最先进的模型,即能够概括到看不见的环境,可以有效地用作教师以以恒定的计算成本提高较小网络的教师,提高精度。结果表明,我们的COVA可以平均提高预先训练的型号的准确性,平均为21%。
translated by 谷歌翻译
Computer vision applications in intelligent transportation systems (ITS) and autonomous driving (AD) have gravitated towards deep neural network architectures in recent years. While performance seems to be improving on benchmark datasets, many real-world challenges are yet to be adequately considered in research. This paper conducted an extensive literature review on the applications of computer vision in ITS and AD, and discusses challenges related to data, models, and complex urban environments. The data challenges are associated with the collection and labeling of training data and its relevance to real world conditions, bias inherent in datasets, the high volume of data needed to be processed, and privacy concerns. Deep learning (DL) models are commonly too complex for real-time processing on embedded hardware, lack explainability and generalizability, and are hard to test in real-world settings. Complex urban traffic environments have irregular lighting and occlusions, and surveillance cameras can be mounted at a variety of angles, gather dirt, shake in the wind, while the traffic conditions are highly heterogeneous, with violation of rules and complex interactions in crowded scenarios. Some representative applications that suffer from these problems are traffic flow estimation, congestion detection, autonomous driving perception, vehicle interaction, and edge computing for practical deployment. The possible ways of dealing with the challenges are also explored while prioritizing practical deployment.
translated by 谷歌翻译
深度学习取得了长足的进步,用于图像中的对象检测。对象检测的检测准确性和计算成本取决于图像的空间分辨率,这可能会受到相机和存储注意事项的约束。压缩通常是通过减少空间或幅度分辨率或有时两者都对性能的众所周知的影响来实现的。检测精度还取决于感兴趣的对象与摄像机的距离。我们的工作研究了空间和振幅分辨率以及对象距离对物体检测准确性和计算成本的影响。我们开发了Yolov5(ra-Yolo)的分辨率 - 自适应变体,该变体基于输入图像的空间分辨率,它在特征金字塔和检测头中变化。为了训练和评估这种新方法,我们通过结合TJU和Eurocity数据集的图像来创建具有不同空间和振幅分辨率的图像数据集,并通过应用空间调整和压缩来生成不同的分辨率。我们首先表明Ra-Yolo在各种空间分辨率上实现了检测准确性和推理时间之间的良好权衡。然后,我们使用拟议的RA-YOLO模型评估空间和振幅分辨率对物体检测准确性的影响。我们证明,导致最高检测精度的最佳空间分辨率取决于“耐受性”图像大小。我们进一步评估了对象到摄像机对检测准确性的影响,并表明较高的空间分辨率可实现更大的检测范围。这些结果为选择图像空间分辨率和压缩设置提供了重要的指南,这些分辨率和压缩设置基于可用的带宽,存储,所需的推理时间和/或所需的检测范围,在实际应用中。
translated by 谷歌翻译