深度学习取得了长足的进步,用于图像中的对象检测。对象检测的检测准确性和计算成本取决于图像的空间分辨率,这可能会受到相机和存储注意事项的约束。压缩通常是通过减少空间或幅度分辨率或有时两者都对性能的众所周知的影响来实现的。检测精度还取决于感兴趣的对象与摄像机的距离。我们的工作研究了空间和振幅分辨率以及对象距离对物体检测准确性和计算成本的影响。我们开发了Yolov5(ra-Yolo)的分辨率 - 自适应变体,该变体基于输入图像的空间分辨率,它在特征金字塔和检测头中变化。为了训练和评估这种新方法,我们通过结合TJU和Eurocity数据集的图像来创建具有不同空间和振幅分辨率的图像数据集,并通过应用空间调整和压缩来生成不同的分辨率。我们首先表明Ra-Yolo在各种空间分辨率上实现了检测准确性和推理时间之间的良好权衡。然后,我们使用拟议的RA-YOLO模型评估空间和振幅分辨率对物体检测准确性的影响。我们证明,导致最高检测精度的最佳空间分辨率取决于“耐受性”图像大小。我们进一步评估了对象到摄像机对检测准确性的影响,并表明较高的空间分辨率可实现更大的检测范围。这些结果为选择图像空间分辨率和压缩设置提供了重要的指南,这些分辨率和压缩设置基于可用的带宽,存储,所需的推理时间和/或所需的检测范围,在实际应用中。
translated by 谷歌翻译
在监控和搜索和救援应用程序中,重要的是在低端设备上实时执行多目标跟踪(MOT)。今天的MOT解决方案采用深度神经网络,往往具有高计算复杂性。识别帧大小对跟踪性能的影响,我们提出了深度,一种模型不可知框架尺寸选择方法,可在现有的全卷积网络基跟踪器之上进行操作,以加速跟踪吞吐量。在培训阶段,我们将可检测性分数纳入单次跟踪器架构,使得DeepScale以自我监督的方式学习不同帧大小的表示估计。在推理期间,它可以根据基于用户控制参数根据视觉内容的复杂性来调整帧大小。为了利用边缘服务器上的计算资源,我们提出了两个计算分区模式,即仅使用自适应帧大小传输和边缘服务器辅助跟踪仅适用于MOT,即边缘服务器。 MOT数据集的广泛实验和基准测试证明了深度的有效性和灵活性。与最先进的追踪器相比,DeepScale ++,DeepScale的变种实现1.57倍加速,仅在一个配置中的MOT15数据集上跟踪准确性。我们已经实现和评估了DeepScale ++,以及由NVIDIA JETSON TX2板和GPU服务器组成的小型测试平台上所提出的计算分区方案。实验显示与仅服务器或智能相机的解决方案相比跟踪性能和延迟之间的非琐碎权衡。
translated by 谷歌翻译
先进的可穿戴设备越来越多地利用高分辨率多摄像头系统。作为用于处理所得到的图像数据的最先进的神经网络是计算要求的,对于利用第五代(5G)无线连接和移动边缘计算,已经越来越感兴趣,以将该处理卸载到云。为了评估这种可能性,本文提出了一个详细的仿真和评估,用于5G无线卸载,用于对象检测,在一个名为Vis4ion的强大新型智能可穿戴物中,用于盲目损害(BVI)。目前的Vis4ion系统是一种具有高分辨率摄像机,视觉处理和触觉和音频反馈的仪表簿。本文认为将相机数据上载到移动边缘云以执行实时对象检测并将检测结果传输回可穿戴。为了确定视频要求,纸张评估视频比特率和分辨率对物体检测精度和范围的影响。利用与BVI导航相关的标记对象的新街道场景数据集进行分析。视觉评估与详细的全堆栈无线网络仿真结合,以确定吞吐量的分布和延迟,具有来自城市环境中的新高分辨率3D模型的实际导航路径和射线跟踪。为了比较,无线仿真考虑了标准的4G长期演进(LTE)载波和高速度5G毫米波(MMWAVE)载波。因此,该工作提供了对具有高带宽和低延迟要求的应用中的MMWAVE连接的边缘计算的彻底和现实评估。
translated by 谷歌翻译
深神网络的对象探测器正在不断发展,并用于多种应用程序,每个应用程序都有自己的要求集。尽管关键安全应用需要高准确性和可靠性,但低延迟任务需要资源和节能网络。不断提出了实时探测器,在高影响现实世界中是必需的,但是它们过分强调了准确性和速度的提高,而其他功能(例如多功能性,鲁棒性,资源和能源效率)则被省略。现有网络的参考基准不存在,设计新网络的标准评估指南也不存在,从而导致比较模棱两可和不一致的比较。因此,我们对广泛的数据集进行了多个实时探测器(基于锚点,关键器和变压器)的全面研究,并报告了一系列广泛指标的结果。我们还研究了变量,例如图像大小,锚固尺寸,置信阈值和架构层对整体性能的影响。我们分析了检测网络的鲁棒性,以防止分配变化,自然腐败和对抗性攻击。此外,我们提供了校准分析来评估预测的可靠性。最后,为了强调现实世界的影响,我们对自动驾驶和医疗保健应用进行了两个独特的案例研究。为了进一步衡量关键实时应用程序中网络的能力,我们报告了在Edge设备上部署检测网络后的性能。我们广泛的实证研究可以作为工业界对现有网络做出明智选择的指南。我们还希望激发研究社区的设计和评估网络的新方向,该网络着重于更大而整体的概述,以实现深远的影响。
translated by 谷歌翻译
Single-frame InfraRed Small Target (SIRST) detection has been a challenging task due to a lack of inherent characteristics, imprecise bounding box regression, a scarcity of real-world datasets, and sensitive localization evaluation. In this paper, we propose a comprehensive solution to these challenges. First, we find that the existing anchor-free label assignment method is prone to mislabeling small targets as background, leading to their omission by detectors. To overcome this issue, we propose an all-scale pseudo-box-based label assignment scheme that relaxes the constraints on scale and decouples the spatial assignment from the size of the ground-truth target. Second, motivated by the structured prior of feature pyramids, we introduce the one-stage cascade refinement network (OSCAR), which uses the high-level head as soft proposals for the low-level refinement head. This allows OSCAR to process the same target in a cascade coarse-to-fine manner. Finally, we present a new research benchmark for infrared small target detection, consisting of the SIRST-V2 dataset of real-world, high-resolution single-frame targets, the normalized contrast evaluation metric, and the DeepInfrared toolkit for detection. We conduct extensive ablation studies to evaluate the components of OSCAR and compare its performance to state-of-the-art model-driven and data-driven methods on the SIRST-V2 benchmark. Our results demonstrate that a top-down cascade refinement framework can improve the accuracy of infrared small target detection without sacrificing efficiency. The DeepInfrared toolkit, dataset, and trained models are available at https://github.com/YimianDai/open-deepinfrared to advance further research in this field.
translated by 谷歌翻译
随着深度卷积神经网络的兴起,对象检测在过去几年中取得了突出的进步。但是,这种繁荣无法掩盖小物体检测(SOD)的不令人满意的情况,这是计算机视觉中臭名昭著的挑战性任务之一,这是由于视觉外观不佳和由小目标的内在结构引起的嘈杂表示。此外,用于基准小对象检测方法基准测试的大规模数据集仍然是瓶颈。在本文中,我们首先对小物体检测进行了详尽的审查。然后,为了催化SOD的发展,我们分别构建了两个大规模的小物体检测数据集(SODA),SODA-D和SODA-A,分别集中在驾驶和空中场景上。 SODA-D包括24704个高质量的交通图像和277596个9个类别的实例。对于苏打水,我们收集2510个高分辨率航空图像,并在9个类别上注释800203实例。众所周知,拟议的数据集是有史以来首次尝试使用针对多类SOD量身定制的大量注释实例进行大规模基准测试。最后,我们评估主流方法在苏打水上的性能。我们预计发布的基准可以促进SOD的发展,并产生该领域的更多突破。数据集和代码将很快在:\ url {https://shaunyuan22.github.io/soda}上。
translated by 谷歌翻译
物体检测通常需要在现代深度学习方法中基于传统或锚盒的滑动窗口分类器。但是,这些方法中的任何一个都需要框中的繁琐配置。在本文中,我们提供了一种新的透视图,其中检测对象被激励为高电平语义特征检测任务。与边缘,角落,斑点和其他特征探测器一样,所提出的探测器扫描到全部图像的特征点,卷积自然适合该特征点。但是,与这些传统的低级功能不同,所提出的探测器用于更高级别的抽象,即我们正在寻找有物体的中心点,而现代深层模型已经能够具有如此高级别的语义抽象。除了Blob检测之外,我们还预测了中心点的尺度,这也是直接的卷积。因此,在本文中,通过卷积简化了行人和面部检测作为直接的中心和规模预测任务。这样,所提出的方法享有一个无盒设置。虽然结构简单,但它对几个具有挑战性的基准呈现竞争准确性,包括行人检测和面部检测。此外,执行交叉数据集评估,证明所提出的方法的卓越泛化能力。可以访问代码和模型(https://github.com/liuwei16/csp和https://github.com/hasanirtiza/pedestron)。
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
在本文中,我们为RSI(名为Superyolo)提出了一种准确而快速的小对象检测方法,该方法融合了多模式数据并通过利用辅助超级分辨率(SR)学习并考虑既有辅助的超级分辨率(SR)对象进行高分辨率(HR)对象检测检测准确性和计算成本。首先,我们通过删除焦点模块来保持人力资源特征并显着克服小物体缺失的误差来构建紧凑的基线。其次,我们利用像素级的多模式融合(MF)从各种数据中提取信息,以促进RSI中的小物体更合适和有效的功能。此外,我们设计了一个简单且灵活的SR分支来学习HR特征表示,可以区分具有低分辨率(LR)输入的庞大背景的小物体,从而进一步提高了检测准确性。此外,为避免引入其他计算,SR分支在推理阶段被丢弃,并且由于LR输入而减少了网络模型的计算。实验结果表明,在广泛使用的Vedai RS数据集上,Superyolo的精度为73.61%(在MAP50方面),比SOTA大型模型(例如Yolov5L,Yolov5X和RS设计的Yolors)高10%以上。同时,Superyolo的Gfolps和参数大小比Yolov5X少约18.1倍,4.2倍。我们提出的模型显示出与最新模型相比,具有良好的准确性速度权衡。该代码将在https://github.com/icey-zhang/superyolo上开放。
translated by 谷歌翻译
面部检测是为了在图像中搜索面部的所有可能区域,并且如果有任何情况,则定位面部。包括面部识别,面部表情识别,面部跟踪和头部姿势估计的许多应用假设面部的位置和尺寸在图像中是已知的。近几十年来,研究人员从Viola-Jones脸上检测器创造了许多典型和有效的面部探测器到当前的基于CNN的CNN。然而,随着图像和视频的巨大增加,具有面部刻度的变化,外观,表达,遮挡和姿势,传统的面部探测器被挑战来检测野外面孔的各种“脸部。深度学习技术的出现带来了非凡的检测突破,以及计算的价格相当大的价格。本文介绍了代表性的深度学习的方法,并在准确性和效率方面提出了深度和全面的分析。我们进一步比较并讨论了流行的并挑战数据集及其评估指标。进行了几种成功的基于深度学习的面部探测器的全面比较,以使用两个度量来揭示其效率:拖鞋和延迟。本文可以指导为不同应用选择合适的面部探测器,也可以开发更高效和准确的探测器。
translated by 谷歌翻译
Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles which combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy and optimization function, etc. In this paper, we provide a review on deep learning based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely Convolutional Neural Network (CNN). Then we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network based learning systems.
translated by 谷歌翻译
In object detection, the intersection over union (IoU) threshold is frequently used to define positives/negatives. The threshold used to train a detector defines its quality. While the commonly used threshold of 0.5 leads to noisy (low-quality) detections, detection performance frequently degrades for larger thresholds. This paradox of high-quality detection has two causes: 1) overfitting, due to vanishing positive samples for large thresholds, and 2) inference-time quality mismatch between detector and test hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, composed of a sequence of detectors trained with increasing IoU thresholds, is proposed to address these problems. The detectors are trained sequentially, using the output of a detector as training set for the next. This resampling progressively improves hypotheses quality, guaranteeing a positive training set of equivalent size for all detectors and minimizing overfitting. The same cascade is applied at inference, to eliminate quality mismatches between hypotheses and detectors. An implementation of the Cascade R-CNN without bells or whistles achieves state-of-the-art performance on the COCO dataset, and significantly improves high-quality detection on generic and specific object detection datasets, including VOC, KITTI, CityPerson, and WiderFace. Finally, the Cascade R-CNN is generalized to instance segmentation, with nontrivial improvements over the Mask R-CNN. To facilitate future research, two implementations are made available at https://github.com/zhaoweicai/cascade-rcnn (Caffe) and https://github.com/zhaoweicai/Detectron-Cascade-RCNN (Detectron).
translated by 谷歌翻译
Pedestrian detection in the wild remains a challenging problem especially when the scene contains significant occlusion and/or low resolution of the pedestrians to be detected. Existing methods are unable to adapt to these difficult cases while maintaining acceptable performance. In this paper we propose a novel feature learning model, referred to as CircleNet, to achieve feature adaptation by mimicking the process humans looking at low resolution and occluded objects: focusing on it again, at a finer scale, if the object can not be identified clearly for the first time. CircleNet is implemented as a set of feature pyramids and uses weight sharing path augmentation for better feature fusion. It targets at reciprocating feature adaptation and iterative object detection using multiple top-down and bottom-up pathways. To take full advantage of the feature adaptation capability in CircleNet, we design an instance decomposition training strategy to focus on detecting pedestrian instances of various resolutions and different occlusion levels in each cycle. Specifically, CircleNet implements feature ensemble with the idea of hard negative boosting in an end-to-end manner. Experiments on two pedestrian detection datasets, Caltech and CityPersons, show that CircleNet improves the performance of occluded and low-resolution pedestrians with significant margins while maintaining good performance on normal instances.
translated by 谷歌翻译
由于字体,大小,颜色和方向的各种文本变化,任意形状的场景文本检测是一项具有挑战性的任务。大多数现有基于回归的方法求助于回归文本区域的口罩或轮廓点以建模文本实例。但是,回归完整的口罩需要高训练的复杂性,并且轮廓点不足以捕获高度弯曲的文本的细节。为了解决上述限制,我们提出了一个名为TextDCT的新颖的轻巧锚文本检测框架,该框架采用离散的余弦变换(DCT)将文本掩码编码为紧凑型向量。此外,考虑到金字塔层中训练样本不平衡的数量,我们仅采用单层头来进行自上而下的预测。为了建模单层头部的多尺度文本,我们通过将缩水文本区域视为正样本,并通过融合来介绍一个新颖的积极抽样策略,并通过融合来设计特征意识模块(FAM),以实现空间意识和规模的意识丰富的上下文信息并关注更重要的功能。此外,我们提出了一种分割的非量最大抑制(S-NMS)方法,该方法可以过滤低质量的掩模回归。在四个具有挑战性的数据集上进行了广泛的实验,这表明我们的TextDCT在准确性和效率上都获得了竞争性能。具体而言,TextDCT分别以每秒17.2帧(FPS)和F-measure的F-MEASIE达到85.1,而CTW1500和Total-Text数据集的F-Measure 84.9分别为15.1 fps。
translated by 谷歌翻译
The goal of this paper is to serve as a guide for selecting a detection architecture that achieves the right speed/memory/accuracy balance for a given application and platform. To this end, we investigate various ways to trade accuracy for speed and memory usage in modern convolutional object detection systems. A number of successful systems have been proposed in recent years, but apples-toapples comparisons are difficult due to different base feature extractors (e.g., VGG, Residual Networks), different default image resolutions, as well as different hardware and software platforms. We present a unified implementation of the Faster R-CNN [31], R-FCN [6] and SSD [26] systems, which we view as "meta-architectures" and trace out the speed/accuracy trade-off curve created by using alternative feature extractors and varying other critical parameters such as image size within each of these meta-architectures. On one extreme end of this spectrum where speed and memory are critical, we present a detector that achieves real time speeds and can be deployed on a mobile device. On the opposite end in which accuracy is critical, we present a detector that achieves state-of-the-art performance measured on the COCO detection task.
translated by 谷歌翻译
Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But recent deep learning object detectors have avoided pyramid representations, in part because they are compute and memory intensive. In this paper, we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A topdown architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using FPN in a basic Faster R-CNN system, our method achieves state-of-the-art singlemodel results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 6 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection. Code will be made publicly available.
translated by 谷歌翻译
凝视对象预测(GOP)是一种新的任务,旨在发现人类盯着人物。它具有很大的应用意义,但仍然缺乏统一的解决方案框架。直观的解决方案是将物体检测分支纳入现有的凝视预测方法。然而,先前的凝视预测方法通常使用两种不同的网络来从场景图像和头部图像中提取特征,这将导致繁重的网络架构并防止每个分支联合优化。在本文中,我们构建一个名为Gatector的新框架,以统一的方式解决凝视对象预测问题。特别地,首先提出了一种特定的特定于特定的(SGS)特征提取器以利用共享骨干,以提取场景和头部图像的一般特征。为了更好地考虑输入和任务的特殊性,SGS在共享骨干声间之后引入了共享骨干网之前的两个输入特定块和三个任务特定块。具体地,设计新的Defocus层以在不丢失信息或需要额外计算的情况下生成对象检测任务的对象特征。此外,引入了能量聚集损失以引导凝视热图来集中在凝视的盒子上。最后,我们提出了一种新的MDAP度量,即使在没有重叠区域时也可以揭示盒子之间的差异。 Goo DataSet上的广泛实验验证了我们在所有三个轨道中的方法的优越性,即对象检测,凝视估计和凝视对象预测。
translated by 谷歌翻译
We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. SSD is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stages and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, COCO, and ILSVRC datasets confirm that SSD has competitive accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. For 300 × 300 input, SSD achieves 74.3% mAP 1 on VOC2007 test at 59 FPS on a Nvidia Titan X and for 512 × 512 input, SSD achieves 76.9% mAP, outperforming a comparable state-of-the-art Faster R-CNN model. Compared to other single stage methods, SSD has much better accuracy even with a smaller input image size. Code is available at: https://github.com/weiliu89/caffe/tree/ssd .
translated by 谷歌翻译
我们引入了一种新型的自动驾驶汽车 - 一种自动推土机,有望以有效,健壮和安全的方式完成建筑工地任务。为了更好地处理推土机的路径规划并确保建筑工地的安全性,对象检测是感知任务中最关键的组成部分之一。在这项工作中,我们首先通过开车来收集建筑工地数据。然后,我们彻底分析数据以了解其分布。最后,对两个众所周知的对象检测模型进行了训练,他们的性能通过广泛的训练策略和超参数进行了基准测试。
translated by 谷歌翻译
作为自治车辆和自主赛车的竞争程度,所以需要更快,更准确的探测器。虽然我们的裸眼能够几乎立即提取上下文信息,但即使从远处地,图像分辨率和计算资源限制也使检测到较小的对象(即占用输入图像中小像素区域的对象)机器的真正具有挑战性的任务和一个广泛的研究领域。本研究探讨了如何修改流行的yolov5对象检测器以改善其在检测较小物体时的性能,具有自主赛车的特定应用。为实现这一目标,我们调查如何更换模型的某些结构元素(以及它们的连接和其他参数)可以影响性能和推理时间。在这样做时,我们提出了一系列模型,在不同的尺度上,我们命名为“YOLO-Z”,当时在50%iou的较小物体时,在地图上显示出高达6.9%的提高,以仅仅a与原始yolov5相比,推理时间增加3ms。我们的目标是为未来的研究提供调整流行检测器的可能性,例如YOLOV5以解决特定任务,并提供关于具体变化如何影响小对象检测的洞察。应用于自动车辆的更广泛背景的这种发现可以增加这些系统可用的上下文信息的量。
translated by 谷歌翻译