在数十年中收集的数字数据,并且使用信息技术目前生产的数据是无标记的数据或数据,没有描述。未标记的数据相对容易获取,但即使使用域专家也可以标记昂贵。最近的大多数作品都集中在使用不确定性指标来解决此问题的主动学习上。尽管大多数不确定性选择策略都非常有效,但他们未能考虑到未标记的实例的信息,并且很容易查询异常值。为了解决这些挑战,我们提出了一种混合方法来计算实例的不确定性和信息性,然后使用预算注释者自动标记计算的实例。为了降低注释成本,我们采用了最先进的预培训模型,以避免查询这些模型中已包含的信息。我们对不同数据集的广泛实验证明了该方法的功效。
translated by 谷歌翻译
Recent developments in in-situ monitoring and process control in Additive Manufacturing (AM), also known as 3D-printing, allows the collection of large amounts of emission data during the build process of the parts being manufactured. This data can be used as input into 3D and 2D representations of the 3D-printed parts. However the analysis and use, as well as the characterization of this data still remains a manual process. The aim of this paper is to propose an adaptive human-in-the-loop approach using Machine Learning techniques that automatically inspect and annotate the emissions data generated during the AM process. More specifically, this paper will look at two scenarios: firstly, using convolutional neural networks (CNNs) to automatically inspect and classify emission data collected by in-situ monitoring and secondly, applying Active Learning techniques to the developed classification model to construct a human-in-the-loop mechanism in order to accelerate the labeling process of the emission data. The CNN-based approach relies on transfer learning and fine-tuning, which makes the approach applicable to other industrial image patterns. The adaptive nature of the approach is enabled by uncertainty sampling strategy to automatic selection of samples to be presented to human experts for annotation.
translated by 谷歌翻译
The generalisation performance of a convolutional neural networks (CNN) is majorly predisposed by the quantity, quality, and diversity of the training images. All the training data needs to be annotated in-hand before, in many real-world applications data is easy to acquire but expensive and time-consuming to label. The goal of the Active learning for the task is to draw most informative samples from the unlabeled pool which can used for training after annotation. With total different objective, self-supervised learning which have been gaining meteoric popularity by closing the gap in performance with supervised methods on large computer vision benchmarks. self-supervised learning (SSL) these days have shown to produce low-level representations that are invariant to distortions of the input sample and can encode invariance to artificially created distortions, e.g. rotation, solarization, cropping etc. self-supervised learning (SSL) approaches rely on simpler and more scalable frameworks for learning. In this paper, we unify these two families of approaches from the angle of active learning using self-supervised learning mainfold and propose Deep Active Learning using BarlowTwins(DALBT), an active learning method for all the datasets using combination of classifier trained along with self-supervised loss framework of Barlow Twins to a setting where the model can encode the invariance of artificially created distortions, e.g. rotation, solarization, cropping etc.
translated by 谷歌翻译
As an important data selection schema, active learning emerges as the essential component when iterating an Artificial Intelligence (AI) model. It becomes even more critical given the dominance of deep neural network based models, which are composed of a large number of parameters and data hungry, in application. Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions. In this paper, we present a review of active learning through deep active learning approaches from the following perspectives: 1) technical advancements in active learning, 2) applications of active learning in computer vision, 3) industrial systems leveraging or with potential to leverage active learning for data iteration, 4) current limitations and future research directions. We expect this paper to clarify the significance of active learning in a modern AI model manufacturing process and to bring additional research attention to active learning. By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies by boosting model production at scale.
translated by 谷歌翻译
主动学习(al)试图通过标记最少的样本来最大限度地提高模型的性能增益。深度学习(DL)是贪婪的数据,需要大量的数据电源来优化大量参数,因此模型了解如何提取高质量功能。近年来,由于互联网技术的快速发展,我们处于信息种类的时代,我们有大量的数据。通过这种方式,DL引起了研究人员的强烈兴趣,并已迅速发展。与DL相比,研究人员对Al的兴趣相对较低。这主要是因为在DL的崛起之前,传统的机器学习需要相对较少的标记样品。因此,早期的Al很难反映其应得的价值。虽然DL在各个领域取得了突破,但大多数这一成功都是由于大量现有注释数据集的宣传。然而,收购大量高质量的注释数据集消耗了很多人力,这在某些领域不允许在需要高专业知识,特别是在语音识别,信息提取,医学图像等领域中, al逐渐受到适当的关注。自然理念是AL是否可用于降低样本注释的成本,同时保留DL的强大学习能力。因此,已经出现了深度主动学习(DAL)。虽然相关的研究非常丰富,但它缺乏对DAL的综合调查。本文要填补这一差距,我们为现有工作提供了正式的分类方法,以及全面和系统的概述。此外,我们还通过申请的角度分析并总结了DAL的发展。最后,我们讨论了DAL中的混乱和问题,为DAL提供了一些可能的发展方向。
translated by 谷歌翻译
我们提出了一种新颖的方法,即沙拉,用于将预先训练的“源”域网络适应“目标”域的挑战性视觉任务,在“目标”域中注释的预算很小,标签空间的变化。此外,该任务假定由于隐私问题或其他方式,源数据无法适应。我们假设这样的系统需要共同优化(i)从目标域中选择固定数量的样本以进行注释的双重任务,以及(ii)知识从预训练的网络转移到目标域。为此,沙拉由一个新颖的引导注意转移网络(GATN)和一个主动学习功能组成。 GATN启用了从预训练的网络到目标网络的特征蒸馏,并与HAL采用的转移性和不确定性标准相辅相成。沙拉有三个关键的好处:(i)它是任务不合时宜的,可以在各种视觉任务(例如分类,分割和检测)中应用; (ii)它可以处理从预训练的源网络到目标域的输出标签空间的变化; (iii)它不需要访问源数据进行适应。我们对3个视觉任务进行了广泛的实验,即。数字分类(MNIST,SVHN,VISDA),合成(GTA5)与真实(CityScapes)图像分割和文档布局检测(PublayNet to DSSE)。我们表明,我们的无源方法(沙拉)比先前的适应方法提高了0.5%-31.3%(跨数据集和任务),该方法假设访问大量带注释的源数据以进行适应。
translated by 谷歌翻译
大型标记数据集的可用性是深度学习成功的关键组成部分。但是,大型数据集上的标签通常很耗时且昂贵。主动学习是一个研究领域,通过选择最重要的标签样本来解决昂贵的标签问题。基于多样性的采样算法被称为基于表示的主动学习方法的组成部分。在本文中,我们介绍了一种新的基于多样性的初始数据集选择算法,以选择有效学习环境中初始标记的最有用的样本集。自我监督的表示学习用于考虑初始数据集选择算法中样品的多样性。此外,我们提出了一种新型的主动学习查询策略,该策略使用基于多样性的基于一致性的嵌入方式采样。通过考虑基于一致性的嵌入方案中多样性的一致性信息,该方法可以在半监督的学习环境中选择更多信息的样本来标记。比较实验表明,通过利用未标记的数据的多样性,与先前的主动学习方法相比,该提出的方法在CIFAR-10和CALTECH-101数据集上取得了令人信服的结果。
translated by 谷歌翻译
自动驾驶正在快速推进,级别2个功能正在成为标准功能。最重要的休假之一是在苛刻的天气和低光条件下获得强大的视觉感知,其中精度降解严重。在这些场景期间,具有天气分类模型将降低视觉感知信心至关重要。因此,我们已经为天气(雾,雨,雪)分类和光线(明亮,适度,低)分类建造了新的数据集。此外,我们提供街道类型(沥青,草和鹅卵石)分类,导致9个标签。每个图像都有三个标签,对应天气,光线水平和街道类型。我们录制了利用RCCC(RED / CLEAR)格式的工业前置摄像头的数据,分辨率为1024 \ times1084 $。我们收集了15k视频序列和采样的60K图像。我们实现了一个主动学习框架,以减少数据集的冗余,并找到用于训练模型的最佳帧集。我们将60K图像进一步蒸馏到1.1K图像,这将在隐私匿名化之后公开分享。没有公共数据集的天气和光线分类,专注于自动驾驶到我们的知识。用于天气分类的基线ResET18网络实现了最先进的导致两种非汽车天气分类公共数据集,但在我们提出的数据集中明显降低了准确性,证明它不是饱和的,需要进一步研究。
translated by 谷歌翻译
在汽车行业中,标记数据的匮乏是典型的挑战。注释的时间序列测量需要固体域知识和深入的探索性数据分析,这意味着高标签工作。传统的主动学习(AL)通过根据估计的分类概率积极查询最有用的实例来解决此问题,并在迭代中重新审视该模型。但是,学习效率强烈依赖于初始模型,从而导致初始数据集和查询编号的大小之间的权衡。本文提出了一个新颖的几杆学习(FSL)基于AL框架,该框架通过将原型网络(Protonet)纳入AL迭代来解决权衡问题。一方面,结果表明了对初始模型的鲁棒性,另一方面,通过在每种迭代中的支持设置的主动选择方面的学习效率。该框架已在UCI HAR/HAPT数据集​​和现实世界制动操纵数据集上进行了验证。学习绩效在两个数据集上都显着超过了传统的AL算法,分别以10%和5%的标签工作实现了90%的分类精度。
translated by 谷歌翻译
大多数杂草物种都会通过竞争高价值作物所需的营养而产生对农业生产力的不利影响。手动除草对于大型种植区不实用。已经开展了许多研究,为农业作物制定了自动杂草管理系统。在这个过程中,其中一个主要任务是识别图像中的杂草。但是,杂草的认可是一个具有挑战性的任务。它是因为杂草和作物植物的颜色,纹理和形状类似,可以通过成像条件,当记录图像时的成像条件,地理或天气条件进一步加剧。先进的机器学习技术可用于从图像中识别杂草。在本文中,我们调查了五个最先进的深神经网络,即VGG16,Reset-50,Inception-V3,Inception-Resnet-V2和MobileNetv2,并评估其杂草识别的性能。我们使用了多种实验设置和多个数据集合组合。特别是,我们通过组合几个较小的数据集,通过数据增强构成了一个大型DataSet,缓解了类别不平衡,并在基于深度神经网络的基准测试中使用此数据集。我们通过保留预先训练的权重来调查使用转移学习技术来利用作物和杂草数据集的图像提取特征和微调它们。我们发现VGG16比小规模数据集更好地执行,而ResET-50比其他大型数据集上的其他深网络更好地执行。
translated by 谷歌翻译
The performance of deep neural networks improves with more annotated data. The problem is that the budget for annotation is limited. One solution to this is active learning, where a model asks human to annotate data that it perceived as uncertain. A variety of recent methods have been proposed to apply active learning to deep networks but most of them are either designed specific for their target tasks or computationally inefficient for large networks. In this paper, we propose a novel active learning method that is simple but task-agnostic, and works efficiently with the deep networks. We attach a small parametric module, named "loss prediction module," to a target network, and learn it to predict target losses of unlabeled inputs. Then, this module can suggest data that the target model is likely to produce a wrong prediction. This method is task-agnostic as networks are learned from a single loss regardless of target tasks. We rigorously validate our method through image classification, object detection, and human pose estimation, with the recent network architectures. The results demonstrate that our method consistently outperforms the previous methods over the tasks.
translated by 谷歌翻译
主动学习(AL)算法旨在识别注释的最佳数据子集,使得深神经网络(DNN)在此标记子集上培训时可以实现更好的性能。 AL特别有影响的工业规模设置,其中数据标签成本高,从业者使用各种工具来处理,以提高模型性能。最近自我监督预测(SSP)的成功突出了利用丰富的未标记数据促进模型性能的重要性。通过将AL与SSP结合起来,我们可以使用未标记的数据,同时标记和培训特别是信息样本。在这项工作中,我们研究了Imagenet上的AL和SSP的组合。我们发现小型玩具数据集上的性能 - 文献中的典型基准设置 - 由于活动学习者选择的类不平衡样本,而不是想象中的性能。在我们测试的现有基线中,各种小型和大规​​模设置的流行AL算法未能以随机抽样优于差异。为了解决类别不平衡问题,我们提出了平衡选择(基础),这是一种简单,可伸缩的AL算法,通过选择比现有方法更加平衡样本来始终如一地始终采样。我们的代码可用于:https://github.com/zeyademam/active_learning。
translated by 谷歌翻译
本文解决了在水模型部署民主化中采用了机器学习的一些挑战。第一个挑战是减少了在主动学习的帮助下减少了标签努力(因此关注数据质量),模型推断与Oracle之间的反馈循环:如在保险中,未标记的数据通常丰富,主动学习可能会成为一个重要的资产减少标签成本。为此目的,本文在研究其对合成和真实数据集的实证影响之前,阐述了各种古典主动学习方法。保险中的另一个关键挑战是模型推论中的公平问题。我们将在此主动学习框架中介绍和整合一个用于多级任务的后处理公平,以解决这两个问题。最后对不公平数据集的数值实验突出显示所提出的设置在模型精度和公平性之间存在良好的折衷。
translated by 谷歌翻译
While deep learning succeeds in a wide range of tasks, it highly depends on the massive collection of annotated data which is expensive and time-consuming. To lower the cost of data annotation, active learning has been proposed to interactively query an oracle to annotate a small proportion of informative samples in an unlabeled dataset. Inspired by the fact that the samples with higher loss are usually more informative to the model than the samples with lower loss, in this paper we present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss. The core of our approach is a measurement Temporal Output Discrepancy (TOD) that estimates the sample loss by evaluating the discrepancy of outputs given by models at different optimization steps. Our theoretical investigation shows that TOD lower-bounds the accumulated sample loss thus it can be used to select informative unlabeled samples. On basis of TOD, we further develop an effective unlabeled data sampling strategy as well as an unsupervised learning criterion for active learning. Due to the simplicity of TOD, our methods are efficient, flexible, and task-agnostic. Extensive experimental results demonstrate that our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks. In addition, we show that TOD can be utilized to select the best model of potentially the highest testing accuracy from a pool of candidate models.
translated by 谷歌翻译
Active域适应(ADA)查询所选目标样本的标签,以帮助将模型从相关的源域调整为目标域。由于其有希望的表现,标签成本最少,因此最近引起了人们越来越多的关注。然而,现有的ADA方法尚未完全利用查询数据的局部环境,这对ADA很重要,尤其是当域间隙较大时。在本文中,我们提出了一个局部环境感知的活动域适应性(LADA)的新框架,该框架由两个关键模块组成。本地上下文感知的活动选择(LAS)模块选择其类概率预测与邻居不一致的目标样本。局部上下文感知模型适应(LMA)模块完善了具有查询样本及其扩展的邻居的模型,并由上下文保留损失正规化。广泛的实验表明,与现有的主动选择策略相比,LAS选择了更多的信息样本。此外,配备了LMA,整个LADA方法的表现优于各种基准测试的最先进的ADA解决方案。代码可在https://github.com/tsun/lada上找到。
translated by 谷歌翻译
尽管在许多自然语言处理(NLP)任务中进行了预先训练的语言模型(LMS),但它们需要过多标记的数据来进行微调以实现令人满意的性能。为了提高标签效率,研究人员采取了活跃的学习(AL),而大多数事先工作则忽略未标记数据的潜力。要释放未标记数据的强大功能以获得更好的标签效率和模型性能,我们开发ATM,一个新的框架,它利用自我训练来利用未标记的数据,并且对于特定的AL算法不可知,用作改善现有的插件模块Al方法。具体地,具有高不确定性的未标记数据暴露于Oracle以进行注释,而具有低不确定性的人则可用于自培训。为了缓解自我训练中的标签噪声传播问题,我们设计一个简单且有效的基于动量的内存库,可以动态地从所有轮次汇总模型预测。通过广泛的实验,我们证明了ATM优于最强大的积极学习和自我训练基线,平均将标签效率提高51.9%。
translated by 谷歌翻译
Deep domain adaptation has emerged as a new learning technique to address the lack of massive amounts of labeled data. Compared to conventional methods, which learn shared feature subspaces or reuse important source instances with shallow representations, deep domain adaptation methods leverage deep networks to learn more transferable representations by embedding domain adaptation in the pipeline of deep learning. There have been comprehensive surveys for shallow domain adaptation, but few timely reviews the emerging deep learning based methods. In this paper, we provide a comprehensive survey of deep domain adaptation methods for computer vision applications with four major contributions. First, we present a taxonomy of different deep domain adaptation scenarios according to the properties of data that define how two domains are diverged. Second, we summarize deep domain adaptation approaches into several categories based on training loss, and analyze and compare briefly the state-of-the-art methods under these categories. Third, we overview the computer vision applications that go beyond image classification, such as face recognition, semantic segmentation and object detection. Fourth, some potential deficiencies of current methods and several future directions are highlighted.
translated by 谷歌翻译
虽然深度学习(DL)是渴望数据的,并且通常依靠广泛的标记数据来提供良好的性能,但主动学习(AL)通过从未标记的数据中选择一小部分样本进行标签和培训来降低标签成本。因此,近年来,在有限的标签成本/预算下,深入的积极学习(DAL)是可行的解决方案,可在有限的标签成本/预算下最大化模型性能。尽管已经开发了大量的DAL方法并进行了各种文献综述,但在公平比较设置下对DAL方法的性能评估尚未可用。我们的工作打算填补这一空白。在这项工作中,我们通过重新实现19种引用的DAL方法来构建DAL Toolkit,即Deepal+。我们调查和分类与DAL相关的作品,并构建经常使用的数据集和DAL算法的比较实验。此外,我们探讨了影响DAL功效的一些因素(例如,批处理大小,训练过程中的时期数),这些因素为研究人员设计其DAL实验或执行DAL相关应用程序提供了更好的参考。
translated by 谷歌翻译
This work tackles the problem of semi-supervised learning of image classifiers. Our main insight is that the field of semi-supervised learning can benefit from the quickly advancing field of self-supervised visual representation learning. Unifying these two approaches, we propose the framework of self-supervised semi-supervised learning (S 4 L) and use it to derive two novel semi-supervised image classification methods. We demonstrate the effectiveness of these methods in comparison to both carefully tuned baselines, and existing semi-supervised learning methods. We then show that S 4 L and existing semi-supervised methods can be jointly trained, yielding a new state-of-the-art result on semi-supervised ILSVRC-2012 with 10% of labels.
translated by 谷歌翻译
使用(半)自动显微镜生成的大规模电子显微镜(EM)数据集已成为EM中的标准。考虑到大量数据,对所有数据的手动分析都是不可行的,因此自动分析至关重要。自动分析的主要挑战包括分析和解释生物医学图像的注释,并与实现高通量相结合。在这里,我们回顾了自动计算机技术的最新最新技术以及分析细胞EM结构的主要挑战。关于EM数据的注释,分割和可扩展性,讨论了过去五年来开发的高级计算机视觉,深度学习和软件工具。自动图像采集和分析的集成将允许用纳米分辨率对毫米范围的数据集进行高通量分析。
translated by 谷歌翻译