虽然深度学习(DL)是渴望数据的,并且通常依靠广泛的标记数据来提供良好的性能,但主动学习(AL)通过从未标记的数据中选择一小部分样本进行标签和培训来降低标签成本。因此,近年来,在有限的标签成本/预算下,深入的积极学习(DAL)是可行的解决方案,可在有限的标签成本/预算下最大化模型性能。尽管已经开发了大量的DAL方法并进行了各种文献综述,但在公平比较设置下对DAL方法的性能评估尚未可用。我们的工作打算填补这一空白。在这项工作中,我们通过重新实现19种引用的DAL方法来构建DAL Toolkit,即Deepal+。我们调查和分类与DAL相关的作品,并构建经常使用的数据集和DAL算法的比较实验。此外,我们探讨了影响DAL功效的一些因素(例如,批处理大小,训练过程中的时期数),这些因素为研究人员设计其DAL实验或执行DAL相关应用程序提供了更好的参考。
translated by 谷歌翻译
基于池的主动学习(AL)通过依次从大型未标记数据池中选择信息的未标记样本并从Oracle/Ontoter中查询标签,从而取得了巨大成功。但是,现有的AL采样策略可能在分布外(OOD)数据方案中无法很好地工作,其中未标记的数据池包含一些不属于目标任务类别的数据示例。在OOD数据情景下实现良好的AL性能是一项具有挑战性的任务,因为Al采样策略与OOD样本检测之间的自然冲突。 Al选择很难由当前基本分类器进行分类的数据(例如,预测类概率具有较高熵的样品),而OOD样品往往具有比分布更均匀的预测类概率(即高熵)(即高熵)(ID ) 数据。在本文中,我们提出了一种采样方案,即用于主动学习的蒙特 - 卡洛帕累托优化(POAL),该方案从未标记的数据库中选择了具有固定批次大小的未标记样品的最佳子集。我们将AL采样任务施加为多目标优化问题,因此我们基于两个冲突的目标利用Pareto优化:(1)正常的AL数据采样方案(例如,最大熵)和(2)作为OOD样本。实验结果表明其对经典机器学习(ML)和深度学习(DL)任务的有效性。
translated by 谷歌翻译
As an important data selection schema, active learning emerges as the essential component when iterating an Artificial Intelligence (AI) model. It becomes even more critical given the dominance of deep neural network based models, which are composed of a large number of parameters and data hungry, in application. Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions. In this paper, we present a review of active learning through deep active learning approaches from the following perspectives: 1) technical advancements in active learning, 2) applications of active learning in computer vision, 3) industrial systems leveraging or with potential to leverage active learning for data iteration, 4) current limitations and future research directions. We expect this paper to clarify the significance of active learning in a modern AI model manufacturing process and to bring additional research attention to active learning. By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies by boosting model production at scale.
translated by 谷歌翻译
主动学习(al)试图通过标记最少的样本来最大限度地提高模型的性能增益。深度学习(DL)是贪婪的数据,需要大量的数据电源来优化大量参数,因此模型了解如何提取高质量功能。近年来,由于互联网技术的快速发展,我们处于信息种类的时代,我们有大量的数据。通过这种方式,DL引起了研究人员的强烈兴趣,并已迅速发展。与DL相比,研究人员对Al的兴趣相对较低。这主要是因为在DL的崛起之前,传统的机器学习需要相对较少的标记样品。因此,早期的Al很难反映其应得的价值。虽然DL在各个领域取得了突破,但大多数这一成功都是由于大量现有注释数据集的宣传。然而,收购大量高质量的注释数据集消耗了很多人力,这在某些领域不允许在需要高专业知识,特别是在语音识别,信息提取,医学图像等领域中, al逐渐受到适当的关注。自然理念是AL是否可用于降低样本注释的成本,同时保留DL的强大学习能力。因此,已经出现了深度主动学习(DAL)。虽然相关的研究非常丰富,但它缺乏对DAL的综合调查。本文要填补这一差距,我们为现有工作提供了正式的分类方法,以及全面和系统的概述。此外,我们还通过申请的角度分析并总结了DAL的发展。最后,我们讨论了DAL中的混乱和问题,为DAL提供了一些可能的发展方向。
translated by 谷歌翻译
通过选择最具信息丰富的样本,已证明主动学习可用于最小化标记成本。但是,现有的主动学习方法在诸如不平衡或稀有类别的现实方案中不适用于未标记集中的分发数据和冗余。在这项工作中,我们提出了类似的(基于子模块信息措施的主动学习),使用最近提出的子模块信息措施(SIM)作为采集函数的统一主动学习框架。我们认为类似的不仅在标准的主动学习中工作,而且还可以轻松扩展到上面考虑的现实设置,并充当活动学习的一站式解决方案,可以扩展到大型真实世界数据集。凭经验,我们表明,在罕见的课程的情况下,在罕见的阶级和〜5% - 10%的情况下,在罕见的几个图像分类任务的情况下,相似显着优异的活动学习算法像CiFar-10,Mnist和Imagenet。类似于Distil Toolkit的一部分:“https://github.com/decile-team/distil”。
translated by 谷歌翻译
The generalisation performance of a convolutional neural networks (CNN) is majorly predisposed by the quantity, quality, and diversity of the training images. All the training data needs to be annotated in-hand before, in many real-world applications data is easy to acquire but expensive and time-consuming to label. The goal of the Active learning for the task is to draw most informative samples from the unlabeled pool which can used for training after annotation. With total different objective, self-supervised learning which have been gaining meteoric popularity by closing the gap in performance with supervised methods on large computer vision benchmarks. self-supervised learning (SSL) these days have shown to produce low-level representations that are invariant to distortions of the input sample and can encode invariance to artificially created distortions, e.g. rotation, solarization, cropping etc. self-supervised learning (SSL) approaches rely on simpler and more scalable frameworks for learning. In this paper, we unify these two families of approaches from the angle of active learning using self-supervised learning mainfold and propose Deep Active Learning using BarlowTwins(DALBT), an active learning method for all the datasets using combination of classifier trained along with self-supervised loss framework of Barlow Twins to a setting where the model can encode the invariance of artificially created distortions, e.g. rotation, solarization, cropping etc.
translated by 谷歌翻译
Active learning aims to develop label-efficient algorithms by sampling the most representative queries to be labeled by an oracle. We describe a pool-based semisupervised active learning algorithm that implicitly learns this sampling mechanism in an adversarial manner. Unlike conventional active learning algorithms, our approach is task agnostic, i.e., it does not depend on the performance of the task for which we are trying to acquire labeled data. Our method learns a latent space using a variational autoencoder (VAE) and an adversarial network trained to discriminate between unlabeled and labeled data. The minimax game between the VAE and the adversarial network is played such that while the VAE tries to trick the adversarial network into predicting that all data points are from the labeled pool, the adversarial network learns how to discriminate between dissimilarities in the latent space. We extensively evaluate our method on various image classification and semantic segmentation benchmark datasets and establish a new state of the art on CIFAR10/100, Caltech-256, ImageNet, Cityscapes, and BDD100K. Our results demonstrate that our adversarial approach learns an effective low dimensional latent space in large-scale settings and provides for a computationally efficient sampling method. 1
translated by 谷歌翻译
积极学习是一种降低标签成本以构建高质量机器学习模型的既定技术。主动学习的核心组件是确定应选择哪些数据来注释的采集功能。最先进的采集功能 - 更重要的是主动学习技术 - 已经旨在最大限度地提高清洁性能(例如,准确性)并忽视了鲁棒性,这是一种受到越来越受关注的重要品质。因此,主动学习产生准确但不强大的模型。在本文中,我们提出了一种积极的学习过程,集成了对抗性培训的积极学习过程 - 最熟悉的制作强大模型的方法。通过对11个采集函数的实证研究,4个数据集,6个DNN架构和15105培训的DNN,我们表明,强大的主动学习可以产生具有鲁棒性的模型(对抗性示例的准确性),范围从2.35 \%到63.85 \%,而标准主动学习系统地实现了可忽略不计的鲁棒性(小于0.20 \%)。然而,我们的研究还揭示了在稳健性方面,在准确性上表现良好的采集功能比随机抽样更糟糕。因此,我们检查了它背后的原因,并设计了一个新的采购功能,这些功能既可定位清洁的性能和鲁棒性。我们的采集功能 - 基于熵(DRE)的基于密度的鲁棒采样 - 优于鲁棒性的其他采集功能(包括随机),最高可达24.40 \%(特别是3.84 \%),同时仍然存在竞争力准确性。此外,我们证明了DRE适用于测试选择度量,用于模型再培训,并从所有比较功能中脱颖而出,高达8.21%的鲁棒性。
translated by 谷歌翻译
我们介绍了有监督的对比度积极学习(SCAL),并根据功能相似性(功能IM)和基于主成分分析的基于特征重建误差(FRE)提出有效的活动学习策略,以选择具有不同特征表示的信息性数据示例。我们证明了我们提出的方法可实现最新的准确性,模型校准并减少在图像分类任务上平衡和不平衡数据集的主动学习设置中的采样偏差。我们还评估了模型的鲁棒性,从主动学习环境中不同查询策略得出的分配转移。使用广泛的实验,我们表明我们提出的方法的表现优于高性能密集型方法,从而使平均损坏误差降低了9.9%,在数据集偏移下的预期校准误差降低了7.2%,而AUROC降低了8.9%的AUROC。检测。
translated by 谷歌翻译
主动学习(AL)是应选择的数据用于注释。现有的工作试图选择高度不确定或信息性的注释数据。尽管如此,它仍然不清楚所选择的数据如何影响AL中使用的任务模型的测试性能。在这项工作中,我们通过理论上证明,选择更高梯度规范的未标记数据导致测试损失的较低的上限,从而探讨了这种影响,从而产生更好的测试性能。但是,由于缺乏标签信息,直接计算未标记数据的梯度标准是不可行的。为了解决这一挑战,我们提出了两种计划,即预期的Gradnorm和熵 - Gradnorm。前者通过构建预期的经验损失来计算梯度规范,而后者用熵构造无监督的损失。此外,我们将这两个方案集成在通用AL框架中。我们在古典图像分类和语义分割任务中评估我们的方法。为了展示其域应用程序的能力及其对噪声的鲁棒性,我们还在蜂窝成像分析任务中验证了我们的方法,即Cryo-Collecton Subtom图分类。结果表明,我们的方法达到了最先进的卓越性能。我们的源代码可在https://github.com/xulabs/aitom提供
translated by 谷歌翻译
主动学习(AL)是一个有希望的ML范式,有可能解析大型未标记数据并有助于降低标记数据可能令人难以置信的域中的注释成本。最近提出的基于神经网络的AL方法使用不同的启发式方法来实现这一目标。在这项研究中,我们证明,在相同的实验环境下,不同类型的AL算法(基于不确定性,基于多样性和委员会)产生了与随机采样基线相比的不一致增长。通过各种实验,控制了随机性来源,我们表明,AL算法实现的性能指标方差可能会导致与先前报道的结果不符的结果。我们还发现,在强烈的正则化下,AL方法在各种实验条件下显示出比随机采样基线的边缘或没有优势。最后,我们以一系列建议进行结论,以了解如何使用新的AL算法评估结果,以确保在实验条件下的变化下结果可再现和健壮。我们共享我们的代码以促进AL评估。我们认为,我们的发现和建议将有助于使用神经网络在AL中进行可重复的研究。我们通过https://github.com/prateekmunjal/torchal开源代码
translated by 谷歌翻译
The performance of deep neural networks improves with more annotated data. The problem is that the budget for annotation is limited. One solution to this is active learning, where a model asks human to annotate data that it perceived as uncertain. A variety of recent methods have been proposed to apply active learning to deep networks but most of them are either designed specific for their target tasks or computationally inefficient for large networks. In this paper, we propose a novel active learning method that is simple but task-agnostic, and works efficiently with the deep networks. We attach a small parametric module, named "loss prediction module," to a target network, and learn it to predict target losses of unlabeled inputs. Then, this module can suggest data that the target model is likely to produce a wrong prediction. This method is task-agnostic as networks are learned from a single loss regardless of target tasks. We rigorously validate our method through image classification, object detection, and human pose estimation, with the recent network architectures. The results demonstrate that our method consistently outperforms the previous methods over the tasks.
translated by 谷歌翻译
Jitendra Malik once said, "Supervision is the opium of the AI researcher". Most deep learning techniques heavily rely on extreme amounts of human labels to work effectively. In today's world, the rate of data creation greatly surpasses the rate of data annotation. Full reliance on human annotations is just a temporary means to solve current closed problems in AI. In reality, only a tiny fraction of data is annotated. Annotation Efficient Learning (AEL) is a study of algorithms to train models effectively with fewer annotations. To thrive in AEL environments, we need deep learning techniques that rely less on manual annotations (e.g., image, bounding-box, and per-pixel labels), but learn useful information from unlabeled data. In this thesis, we explore five different techniques for handling AEL.
translated by 谷歌翻译
旨在选择最有用的培训样本子集的CoreSet选择是一个长期存在的学习问题,可以使许多下游任务受益,例如数据效率学习,持续学习,神经体系结构搜索,主动学习等。但是,许多现有的核心选择方法不是为深度学习而设计的,这些方法可能具有很高的复杂性和不良的概括性能。此外,最近提出的方法在模型,数据集和不同复杂性的设置上进行评估。为了促进深度学习中核心选择的研究,我们贡献了一个全面的代码库,即深核,并就CIFAR10和Imagenet数据集的流行核心选择方法提供了经验研究。关于CIFAR10和Imagenet数据集的广泛实验验证,尽管在某些实验设置中具有优势,但随机选择仍然是一个强大的基线。
translated by 谷歌翻译
主动学习(AL)算法旨在识别注释的最佳数据子集,使得深神经网络(DNN)在此标记子集上培训时可以实现更好的性能。 AL特别有影响的工业规模设置,其中数据标签成本高,从业者使用各种工具来处理,以提高模型性能。最近自我监督预测(SSP)的成功突出了利用丰富的未标记数据促进模型性能的重要性。通过将AL与SSP结合起来,我们可以使用未标记的数据,同时标记和培训特别是信息样本。在这项工作中,我们研究了Imagenet上的AL和SSP的组合。我们发现小型玩具数据集上的性能 - 文献中的典型基准设置 - 由于活动学习者选择的类不平衡样本,而不是想象中的性能。在我们测试的现有基线中,各种小型和大规​​模设置的流行AL算法未能以随机抽样优于差异。为了解决类别不平衡问题,我们提出了平衡选择(基础),这是一种简单,可伸缩的AL算法,通过选择比现有方法更加平衡样本来始终如一地始终采样。我们的代码可用于:https://github.com/zeyademam/active_learning。
translated by 谷歌翻译
随着深入学习更加标签的目标,越来越多的论文已经研究了深度模型的主动学习(AL)。然而,普遍存在的实验设置中存在许多问题,主要源于缺乏统一的实施和基准。当前文献中的问题包括有时对不同AL算法的性能的矛盾观察,意外排除重要的概括方法,如数据增强和SGD进行优化,缺乏对al的标签效率等评价方面的研究,并且很少或没有在Al优于随机采样(RS)的情况下的清晰度。在这项工作中,我们通过我们的新开源AL Toolkit Distil在图像分类的背景下统一重新实现了最先进的AL算法,我们仔细研究了这些问题作为有效评估的方面。在积极的方面,我们表明AL技术为2美元至4倍以上$ 4 \倍。与使用数据增强相比,与卢比相比,高效。令人惊讶的是,当包括数据增强时,在使用徽章,最先进的方法,在简单的不确定性采样中不再存在一致的增益。然后,我们仔细分析现有方法如何具有不同数量的冗余和每个类的示例。最后,我们为AL从业者提供了几次见解,以考虑在将来的工作中考虑,例如Al批量大小的效果,初始化的效果,在每一轮中再培训模型的重要性以及其他见解。
translated by 谷歌翻译
While deep learning succeeds in a wide range of tasks, it highly depends on the massive collection of annotated data which is expensive and time-consuming. To lower the cost of data annotation, active learning has been proposed to interactively query an oracle to annotate a small proportion of informative samples in an unlabeled dataset. Inspired by the fact that the samples with higher loss are usually more informative to the model than the samples with lower loss, in this paper we present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss. The core of our approach is a measurement Temporal Output Discrepancy (TOD) that estimates the sample loss by evaluating the discrepancy of outputs given by models at different optimization steps. Our theoretical investigation shows that TOD lower-bounds the accumulated sample loss thus it can be used to select informative unlabeled samples. On basis of TOD, we further develop an effective unlabeled data sampling strategy as well as an unsupervised learning criterion for active learning. Due to the simplicity of TOD, our methods are efficient, flexible, and task-agnostic. Extensive experimental results demonstrate that our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks. In addition, we show that TOD can be utilized to select the best model of potentially the highest testing accuracy from a pool of candidate models.
translated by 谷歌翻译
标记大量数据很昂贵。主动学习旨在通过要求注释未标记的集合中最有用的数据来解决这个问题。我们提出了一种新颖的活跃学习方法,该方法利用自我监督的借口任务和独特的数据采样器来选择既困难又具有代表性的数据。我们发现,简单的自我监督借口任务(例如旋转预测)的损失与下游任务损失密切相关。在主动学习迭代之前,对未标记的集合进行了借口任务学习者进行培训,并且未标记的数据被分类并通过其借口任务损失分组成批处理。在每个主动的学习迭代中,主要任务模型用于批评要注释的批次中最不确定的数据。我们评估了有关各种图像分类和分割基准测试的方法,并在CIFAR10,CALTECH-101,IMAGENET和CITYSCAPES上实现引人注目的性能。我们进一步表明,我们的方法在不平衡的数据集上表现良好,并且可以有效地解决冷启动问题的解决方案,在这种问题中,主动学习性能受到随机采样的初始标记集的影响。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
主动学习通过从未标记的数据集中标记有信息的样本来有效地构建标记的数据集。在现实世界中的活跃学习方案中,考虑到所选样本的多样性至关重要,因为存在许多冗余或高度相似的样本。核心设定方法是基于多样性的有希望的方法,根据样品之间的距离选择不同的样品。然而,与选择最困难的样本的基于不确定性的方法相比,该方法的性能差,神经模型表现出低置信度。在这项工作中,我们通过密度的晶状体分析特征空间,有趣的是,观察到局部稀疏区域往往比密集区域具有更多信息样本。通过我们的分析,我们将核心设定方法赋予密度意识,并提出密度感知的核心集(DACS)。该策略是估计未标记样品的密度,并主要从稀疏区域选择不同的样品。为了减少估计密度的计算瓶颈,我们还基于对区域敏感的散列引入了新的密度近似。实验结果清楚地表明了DAC在分类和回归任务中的功效,并特别表明DAC可以在实际情况下产生最先进的性能。由于DACS微弱地取决于神经体系结构,因此我们提出了一种简单而有效的组合方法,以表明现有方法可以与DAC合并。
translated by 谷歌翻译