The generalisation performance of a convolutional neural networks (CNN) is majorly predisposed by the quantity, quality, and diversity of the training images. All the training data needs to be annotated in-hand before, in many real-world applications data is easy to acquire but expensive and time-consuming to label. The goal of the Active learning for the task is to draw most informative samples from the unlabeled pool which can used for training after annotation. With total different objective, self-supervised learning which have been gaining meteoric popularity by closing the gap in performance with supervised methods on large computer vision benchmarks. self-supervised learning (SSL) these days have shown to produce low-level representations that are invariant to distortions of the input sample and can encode invariance to artificially created distortions, e.g. rotation, solarization, cropping etc. self-supervised learning (SSL) approaches rely on simpler and more scalable frameworks for learning. In this paper, we unify these two families of approaches from the angle of active learning using self-supervised learning mainfold and propose Deep Active Learning using BarlowTwins(DALBT), an active learning method for all the datasets using combination of classifier trained along with self-supervised loss framework of Barlow Twins to a setting where the model can encode the invariance of artificially created distortions, e.g. rotation, solarization, cropping etc.
translated by 谷歌翻译
As an important data selection schema, active learning emerges as the essential component when iterating an Artificial Intelligence (AI) model. It becomes even more critical given the dominance of deep neural network based models, which are composed of a large number of parameters and data hungry, in application. Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions. In this paper, we present a review of active learning through deep active learning approaches from the following perspectives: 1) technical advancements in active learning, 2) applications of active learning in computer vision, 3) industrial systems leveraging or with potential to leverage active learning for data iteration, 4) current limitations and future research directions. We expect this paper to clarify the significance of active learning in a modern AI model manufacturing process and to bring additional research attention to active learning. By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies by boosting model production at scale.
translated by 谷歌翻译
Active learning aims to develop label-efficient algorithms by sampling the most representative queries to be labeled by an oracle. We describe a pool-based semisupervised active learning algorithm that implicitly learns this sampling mechanism in an adversarial manner. Unlike conventional active learning algorithms, our approach is task agnostic, i.e., it does not depend on the performance of the task for which we are trying to acquire labeled data. Our method learns a latent space using a variational autoencoder (VAE) and an adversarial network trained to discriminate between unlabeled and labeled data. The minimax game between the VAE and the adversarial network is played such that while the VAE tries to trick the adversarial network into predicting that all data points are from the labeled pool, the adversarial network learns how to discriminate between dissimilarities in the latent space. We extensively evaluate our method on various image classification and semantic segmentation benchmark datasets and establish a new state of the art on CIFAR10/100, Caltech-256, ImageNet, Cityscapes, and BDD100K. Our results demonstrate that our adversarial approach learns an effective low dimensional latent space in large-scale settings and provides for a computationally efficient sampling method. 1
translated by 谷歌翻译
大型标记数据集的可用性是深度学习成功的关键组成部分。但是,大型数据集上的标签通常很耗时且昂贵。主动学习是一个研究领域,通过选择最重要的标签样本来解决昂贵的标签问题。基于多样性的采样算法被称为基于表示的主动学习方法的组成部分。在本文中,我们介绍了一种新的基于多样性的初始数据集选择算法,以选择有效学习环境中初始标记的最有用的样本集。自我监督的表示学习用于考虑初始数据集选择算法中样品的多样性。此外,我们提出了一种新型的主动学习查询策略,该策略使用基于多样性的基于一致性的嵌入方式采样。通过考虑基于一致性的嵌入方案中多样性的一致性信息,该方法可以在半监督的学习环境中选择更多信息的样本来标记。比较实验表明,通过利用未标记的数据的多样性,与先前的主动学习方法相比,该提出的方法在CIFAR-10和CALTECH-101数据集上取得了令人信服的结果。
translated by 谷歌翻译
我们介绍了有监督的对比度积极学习(SCAL),并根据功能相似性(功能IM)和基于主成分分析的基于特征重建误差(FRE)提出有效的活动学习策略,以选择具有不同特征表示的信息性数据示例。我们证明了我们提出的方法可实现最新的准确性,模型校准并减少在图像分类任务上平衡和不平衡数据集的主动学习设置中的采样偏差。我们还评估了模型的鲁棒性,从主动学习环境中不同查询策略得出的分配转移。使用广泛的实验,我们表明我们提出的方法的表现优于高性能密集型方法,从而使平均损坏误差降低了9.9%,在数据集偏移下的预期校准误差降低了7.2%,而AUROC降低了8.9%的AUROC。检测。
translated by 谷歌翻译
虽然深度学习(DL)是渴望数据的,并且通常依靠广泛的标记数据来提供良好的性能,但主动学习(AL)通过从未标记的数据中选择一小部分样本进行标签和培训来降低标签成本。因此,近年来,在有限的标签成本/预算下,深入的积极学习(DAL)是可行的解决方案,可在有限的标签成本/预算下最大化模型性能。尽管已经开发了大量的DAL方法并进行了各种文献综述,但在公平比较设置下对DAL方法的性能评估尚未可用。我们的工作打算填补这一空白。在这项工作中,我们通过重新实现19种引用的DAL方法来构建DAL Toolkit,即Deepal+。我们调查和分类与DAL相关的作品,并构建经常使用的数据集和DAL算法的比较实验。此外,我们探讨了影响DAL功效的一些因素(例如,批处理大小,训练过程中的时期数),这些因素为研究人员设计其DAL实验或执行DAL相关应用程序提供了更好的参考。
translated by 谷歌翻译
While deep learning succeeds in a wide range of tasks, it highly depends on the massive collection of annotated data which is expensive and time-consuming. To lower the cost of data annotation, active learning has been proposed to interactively query an oracle to annotate a small proportion of informative samples in an unlabeled dataset. Inspired by the fact that the samples with higher loss are usually more informative to the model than the samples with lower loss, in this paper we present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss. The core of our approach is a measurement Temporal Output Discrepancy (TOD) that estimates the sample loss by evaluating the discrepancy of outputs given by models at different optimization steps. Our theoretical investigation shows that TOD lower-bounds the accumulated sample loss thus it can be used to select informative unlabeled samples. On basis of TOD, we further develop an effective unlabeled data sampling strategy as well as an unsupervised learning criterion for active learning. Due to the simplicity of TOD, our methods are efficient, flexible, and task-agnostic. Extensive experimental results demonstrate that our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks. In addition, we show that TOD can be utilized to select the best model of potentially the highest testing accuracy from a pool of candidate models.
translated by 谷歌翻译
标记大量数据很昂贵。主动学习旨在通过要求注释未标记的集合中最有用的数据来解决这个问题。我们提出了一种新颖的活跃学习方法,该方法利用自我监督的借口任务和独特的数据采样器来选择既困难又具有代表性的数据。我们发现,简单的自我监督借口任务(例如旋转预测)的损失与下游任务损失密切相关。在主动学习迭代之前,对未标记的集合进行了借口任务学习者进行培训,并且未标记的数据被分类并通过其借口任务损失分组成批处理。在每个主动的学习迭代中,主要任务模型用于批评要注释的批次中最不确定的数据。我们评估了有关各种图像分类和分割基准测试的方法,并在CIFAR10,CALTECH-101,IMAGENET和CITYSCAPES上实现引人注目的性能。我们进一步表明,我们的方法在不平衡的数据集上表现良好,并且可以有效地解决冷启动问题的解决方案,在这种问题中,主动学习性能受到随机采样的初始标记集的影响。
translated by 谷歌翻译
主动学习(al)试图通过标记最少的样本来最大限度地提高模型的性能增益。深度学习(DL)是贪婪的数据,需要大量的数据电源来优化大量参数,因此模型了解如何提取高质量功能。近年来,由于互联网技术的快速发展,我们处于信息种类的时代,我们有大量的数据。通过这种方式,DL引起了研究人员的强烈兴趣,并已迅速发展。与DL相比,研究人员对Al的兴趣相对较低。这主要是因为在DL的崛起之前,传统的机器学习需要相对较少的标记样品。因此,早期的Al很难反映其应得的价值。虽然DL在各个领域取得了突破,但大多数这一成功都是由于大量现有注释数据集的宣传。然而,收购大量高质量的注释数据集消耗了很多人力,这在某些领域不允许在需要高专业知识,特别是在语音识别,信息提取,医学图像等领域中, al逐渐受到适当的关注。自然理念是AL是否可用于降低样本注释的成本,同时保留DL的强大学习能力。因此,已经出现了深度主动学习(DAL)。虽然相关的研究非常丰富,但它缺乏对DAL的综合调查。本文要填补这一差距,我们为现有工作提供了正式的分类方法,以及全面和系统的概述。此外,我们还通过申请的角度分析并总结了DAL的发展。最后,我们讨论了DAL中的混乱和问题,为DAL提供了一些可能的发展方向。
translated by 谷歌翻译
主动学习是减少训练深神经网络模型中数据量的流行方法。它的成功取决于选择有效的采集函数,该功能尚未根据其预期的信息进行排名。在不确定性抽样中,当前模型具有关于点类标签的不确定性是这种类型排名的主要标准。本文提出了一种在培训卷积神经网络(CNN)中进行不确定性采样的新方法。主要思想是使用CNN提取提取的特征表示作为培训总产品网络(SPN)的数据。由于SPN通常用于估计数据集的分布,因此它们非常适合估算类概率的任务,这些概率可以直接由标准采集函数(例如最大熵和变异比率)使用。此外,我们通过在SPN模型的帮助下通过权重增强了这些采集函数。这些权重使采集功能对数据点的可疑类标签的多样性更加敏感。我们的方法的有效性在对MNIST,时尚持续和CIFAR-10数据集的实验研究中得到了证明,我们将其与最先进的方法MC辍学和贝叶斯批次进行了比较。
translated by 谷歌翻译
积极学习是一种降低标签成本以构建高质量机器学习模型的既定技术。主动学习的核心组件是确定应选择哪些数据来注释的采集功能。最先进的采集功能 - 更重要的是主动学习技术 - 已经旨在最大限度地提高清洁性能(例如,准确性)并忽视了鲁棒性,这是一种受到越来越受关注的重要品质。因此,主动学习产生准确但不强大的模型。在本文中,我们提出了一种积极的学习过程,集成了对抗性培训的积极学习过程 - 最熟悉的制作强大模型的方法。通过对11个采集函数的实证研究,4个数据集,6个DNN架构和15105培训的DNN,我们表明,强大的主动学习可以产生具有鲁棒性的模型(对抗性示例的准确性),范围从2.35 \%到63.85 \%,而标准主动学习系统地实现了可忽略不计的鲁棒性(小于0.20 \%)。然而,我们的研究还揭示了在稳健性方面,在准确性上表现良好的采集功能比随机抽样更糟糕。因此,我们检查了它背后的原因,并设计了一个新的采购功能,这些功能既可定位清洁的性能和鲁棒性。我们的采集功能 - 基于熵(DRE)的基于密度的鲁棒采样 - 优于鲁棒性的其他采集功能(包括随机),最高可达24.40 \%(特别是3.84 \%),同时仍然存在竞争力准确性。此外,我们证明了DRE适用于测试选择度量,用于模型再培训,并从所有比较功能中脱颖而出,高达8.21%的鲁棒性。
translated by 谷歌翻译
The performance of deep neural networks improves with more annotated data. The problem is that the budget for annotation is limited. One solution to this is active learning, where a model asks human to annotate data that it perceived as uncertain. A variety of recent methods have been proposed to apply active learning to deep networks but most of them are either designed specific for their target tasks or computationally inefficient for large networks. In this paper, we propose a novel active learning method that is simple but task-agnostic, and works efficiently with the deep networks. We attach a small parametric module, named "loss prediction module," to a target network, and learn it to predict target losses of unlabeled inputs. Then, this module can suggest data that the target model is likely to produce a wrong prediction. This method is task-agnostic as networks are learned from a single loss regardless of target tasks. We rigorously validate our method through image classification, object detection, and human pose estimation, with the recent network architectures. The results demonstrate that our method consistently outperforms the previous methods over the tasks.
translated by 谷歌翻译
主动学习(AL)算法旨在识别注释的最佳数据子集,使得深神经网络(DNN)在此标记子集上培训时可以实现更好的性能。 AL特别有影响的工业规模设置,其中数据标签成本高,从业者使用各种工具来处理,以提高模型性能。最近自我监督预测(SSP)的成功突出了利用丰富的未标记数据促进模型性能的重要性。通过将AL与SSP结合起来,我们可以使用未标记的数据,同时标记和培训特别是信息样本。在这项工作中,我们研究了Imagenet上的AL和SSP的组合。我们发现小型玩具数据集上的性能 - 文献中的典型基准设置 - 由于活动学习者选择的类不平衡样本,而不是想象中的性能。在我们测试的现有基线中,各种小型和大规​​模设置的流行AL算法未能以随机抽样优于差异。为了解决类别不平衡问题,我们提出了平衡选择(基础),这是一种简单,可伸缩的AL算法,通过选择比现有方法更加平衡样本来始终如一地始终采样。我们的代码可用于:https://github.com/zeyademam/active_learning。
translated by 谷歌翻译
标记数据可以是昂贵的任务,因为它通常由域专家手动执行。对于深度学习而言,这是繁琐的,因为它取决于大型标记的数据集。主动学习(AL)是一种范式,旨在通过仅使用二手车型认为最具信息丰富的数据来减少标签努力。在文本分类设置中,在AL上完成了很少的研究,旁边没有涉及最近的最先进的自然语言处理(NLP)模型。在这里,我们介绍了一个实证研究,可以将基于不确定性的基于不确定性的算法与Bert $ _ {base} $相比,作为使用的分类器。我们评估两个NLP分类数据集的算法:斯坦福情绪树木银行和kvk-Front页面。此外,我们探讨了旨在解决不确定性的al的预定问题的启发式;即,它是不可规范的,并且易于选择异常值。此外,我们探讨了查询池大小对al的性能的影响。虽然发现,AL的拟议启发式没有提高AL的表现;我们的结果表明,使用BERT $ _ {Base} $概率使用不确定性的AL。随着查询池大小变大,性能的这种差异可以减少。
translated by 谷歌翻译
主动学习通过从未标记的数据集中标记有信息的样本来有效地构建标记的数据集。在现实世界中的活跃学习方案中,考虑到所选样本的多样性至关重要,因为存在许多冗余或高度相似的样本。核心设定方法是基于多样性的有希望的方法,根据样品之间的距离选择不同的样品。然而,与选择最困难的样本的基于不确定性的方法相比,该方法的性能差,神经模型表现出低置信度。在这项工作中,我们通过密度的晶状体分析特征空间,有趣的是,观察到局部稀疏区域往往比密集区域具有更多信息样本。通过我们的分析,我们将核心设定方法赋予密度意识,并提出密度感知的核心集(DACS)。该策略是估计未标记样品的密度,并主要从稀疏区域选择不同的样品。为了减少估计密度的计算瓶颈,我们还基于对区域敏感的散列引入了新的密度近似。实验结果清楚地表明了DAC在分类和回归任务中的功效,并特别表明DAC可以在实际情况下产生最先进的性能。由于DACS微弱地取决于神经体系结构,因此我们提出了一种简单而有效的组合方法,以表明现有方法可以与DAC合并。
translated by 谷歌翻译
Active learning enables efficient model training by leveraging interactions between machine learning agents and human annotators. We study and propose a novel framework that formulates batch active learning from the sparse approximation's perspective. Our active learning method aims to find an informative subset from the unlabeled data pool such that the corresponding training loss function approximates its full data pool counterpart. We realize the framework as sparsity-constrained discontinuous optimization problems, which explicitly balance uncertainty and representation for large-scale applications and could be solved by greedy or proximal iterative hard thresholding algorithms. The proposed method can adapt to various settings, including both Bayesian and non-Bayesian neural networks. Numerical experiments show that our work achieves competitive performance across different settings with lower computational complexity.
translated by 谷歌翻译
半监督学习(SSL)是一个有效的框架,可以使用标记和未标记的数据训练模型,但是当缺乏足够的标记样品时,可能会产生模棱两可和不可区分的表示。有了人类的循环学习,积极的学习可以迭代地选择无标记的样品进行标签和培训,以提高SSL框架的性能。但是,大多数现有的活跃学习方法都取决于预先训练的功能,这不适合端到端学习。为了解决SSL的缺点,在本文中,我们提出了一种新颖的端到端表示方法,即ActiveMatch,它将SSL与对比度学习和积极学习结合在一起,以充分利用有限的标签。从少量的标记数据开始,无监督的对比度学习作为热身学习,然后将ActiveMatch结合在一起,将SSL和监督对比度学习结合在一起,并积极选择在培训期间标记的最具代表性的样本,从而更好地表示分类。与MixMatch和FixMatch具有相同数量的标记数据相比,我们表明ActiveMatch实现了最先进的性能,CIFAR-10的精度为89.24%,具有100个收集的标签,而92.20%的精度为92.20%,有200个收集的标签。
translated by 谷歌翻译
虽然注释大量的数据以满足复杂的学习模型,但对于许多现实世界中的应用程序可能会过于良好。主动学习(AL)和半监督学习(SSL)是两个有效但经常被隔离的方法,可以减轻渴望数据的问题。最近的一些研究探索了将AL和SSL相结合以更好地探测未标记数据的潜力。但是,几乎所有这些当代的SSL-AL作品都采用了简单的组合策略,忽略了SSL和AL的固有关系。此外,在处理大规模,高维数据集时,其他方法则遭受高计算成本。通过标记数据的行业实践的激励,我们提出了一种基于创新的基于不一致的虚拟对抗性积极学习(理想)算法,以进一步研究SSL-AL的潜在优势,并实现Al和SSL的相互增强,即SSL,即SSL宣传标签信息,以使标签信息无标记的样本信息并为Al提供平滑的嵌入,而AL排除了具有不一致的预测和相当不确定性的样品。我们通过不同粒度的增强策略(包括细粒度的连续扰动探索和粗粒数据转换)来估计未标记的样品的不一致。在文本和图像域中,广泛的实验验证了所提出的算法的有效性,并将其与最先进的基线进行了比较。两项实际案例研究可视化应用和部署所提出的数据采样算法的实际工业价值。
translated by 谷歌翻译
在数十年中收集的数字数据,并且使用信息技术目前生产的数据是无标记的数据或数据,没有描述。未标记的数据相对容易获取,但即使使用域专家也可以标记昂贵。最近的大多数作品都集中在使用不确定性指标来解决此问题的主动学习上。尽管大多数不确定性选择策略都非常有效,但他们未能考虑到未标记的实例的信息,并且很容易查询异常值。为了解决这些挑战,我们提出了一种混合方法来计算实例的不确定性和信息性,然后使用预算注释者自动标记计算的实例。为了降低注释成本,我们采用了最先进的预培训模型,以避免查询这些模型中已包含的信息。我们对不同数据集的广泛实验证明了该方法的功效。
translated by 谷歌翻译
Even though active learning forms an important pillar of machine learning, deep learning tools are not prevalent within it. Deep learning poses several difficulties when used in an active learning setting. First, active learning (AL) methods generally rely on being able to learn and update models from small amounts of data. Recent advances in deep learning, on the other hand, are notorious for their dependence on large amounts of data. Second, many AL acquisition functions rely on model uncertainty, yet deep learning methods rarely represent such model uncertainty. In this paper we combine recent advances in Bayesian deep learning into the active learning framework in a practical way. We develop an active learning framework for high dimensional data, a task which has been extremely challenging so far, with very sparse existing literature. Taking advantage of specialised models such as Bayesian convolutional neural networks, we demonstrate our active learning techniques with image data, obtaining a significant improvement on existing active learning approaches. We demonstrate this on both the MNIST dataset, as well as for skin cancer diagnosis from lesion images (ISIC2016 task).
translated by 谷歌翻译