标记数据可以是昂贵的任务,因为它通常由域专家手动执行。对于深度学习而言,这是繁琐的,因为它取决于大型标记的数据集。主动学习(AL)是一种范式,旨在通过仅使用二手车型认为最具信息丰富的数据来减少标签努力。在文本分类设置中,在AL上完成了很少的研究,旁边没有涉及最近的最先进的自然语言处理(NLP)模型。在这里,我们介绍了一个实证研究,可以将基于不确定性的基于不确定性的算法与Bert $ _ {base} $相比,作为使用的分类器。我们评估两个NLP分类数据集的算法:斯坦福情绪树木银行和kvk-Front页面。此外,我们探讨了旨在解决不确定性的al的预定问题的启发式;即,它是不可规范的,并且易于选择异常值。此外,我们探讨了查询池大小对al的性能的影响。虽然发现,AL的拟议启发式没有提高AL的表现;我们的结果表明,使用BERT $ _ {Base} $概率使用不确定性的AL。随着查询池大小变大,性能的这种差异可以减少。
translated by 谷歌翻译
主动学习(al)试图通过标记最少的样本来最大限度地提高模型的性能增益。深度学习(DL)是贪婪的数据,需要大量的数据电源来优化大量参数,因此模型了解如何提取高质量功能。近年来,由于互联网技术的快速发展,我们处于信息种类的时代,我们有大量的数据。通过这种方式,DL引起了研究人员的强烈兴趣,并已迅速发展。与DL相比,研究人员对Al的兴趣相对较低。这主要是因为在DL的崛起之前,传统的机器学习需要相对较少的标记样品。因此,早期的Al很难反映其应得的价值。虽然DL在各个领域取得了突破,但大多数这一成功都是由于大量现有注释数据集的宣传。然而,收购大量高质量的注释数据集消耗了很多人力,这在某些领域不允许在需要高专业知识,特别是在语音识别,信息提取,医学图像等领域中, al逐渐受到适当的关注。自然理念是AL是否可用于降低样本注释的成本,同时保留DL的强大学习能力。因此,已经出现了深度主动学习(DAL)。虽然相关的研究非常丰富,但它缺乏对DAL的综合调查。本文要填补这一差距,我们为现有工作提供了正式的分类方法,以及全面和系统的概述。此外,我们还通过申请的角度分析并总结了DAL的发展。最后,我们讨论了DAL中的混乱和问题,为DAL提供了一些可能的发展方向。
translated by 谷歌翻译
本文解决了在水模型部署民主化中采用了机器学习的一些挑战。第一个挑战是减少了在主动学习的帮助下减少了标签努力(因此关注数据质量),模型推断与Oracle之间的反馈循环:如在保险中,未标记的数据通常丰富,主动学习可能会成为一个重要的资产减少标签成本。为此目的,本文在研究其对合成和真实数据集的实证影响之前,阐述了各种古典主动学习方法。保险中的另一个关键挑战是模型推论中的公平问题。我们将在此主动学习框架中介绍和整合一个用于多级任务的后处理公平,以解决这两个问题。最后对不公平数据集的数值实验突出显示所提出的设置在模型精度和公平性之间存在良好的折衷。
translated by 谷歌翻译
命名实体识别(ner)旨在标识在非结构化文本中的命名实体的提到,并将它们分类为预定义的命名实体类。尽管基于深度学习的预先训练的语言模型实现了良好的预测性能,但许多域特定的NERTASK仍然需要足够量的标记数据。主动学习(AL)是标签采集问题的一般框架,已用于NER任务,以最大限度地降低注释成本而不会牺牲模型性能。然而,令牌的严重不平衡的课程分布引入了设计有效的NER Querying方法的挑战。我们提出了al句子查询评估函数,这些函数更加关注可能的积极令牌,并评估基于句子和基于令牌的成本评估策略的这些提出的功能。我们还提出了更好的数据驱动的归一化方法来惩罚太长或太短的句子。我们在来自不同域的三个数据集上的实验表明,所提出的方法减少了带有常规方法的更好或可比预测性能的增注令牌的数量。
translated by 谷歌翻译
The generalisation performance of a convolutional neural networks (CNN) is majorly predisposed by the quantity, quality, and diversity of the training images. All the training data needs to be annotated in-hand before, in many real-world applications data is easy to acquire but expensive and time-consuming to label. The goal of the Active learning for the task is to draw most informative samples from the unlabeled pool which can used for training after annotation. With total different objective, self-supervised learning which have been gaining meteoric popularity by closing the gap in performance with supervised methods on large computer vision benchmarks. self-supervised learning (SSL) these days have shown to produce low-level representations that are invariant to distortions of the input sample and can encode invariance to artificially created distortions, e.g. rotation, solarization, cropping etc. self-supervised learning (SSL) approaches rely on simpler and more scalable frameworks for learning. In this paper, we unify these two families of approaches from the angle of active learning using self-supervised learning mainfold and propose Deep Active Learning using BarlowTwins(DALBT), an active learning method for all the datasets using combination of classifier trained along with self-supervised loss framework of Barlow Twins to a setting where the model can encode the invariance of artificially created distortions, e.g. rotation, solarization, cropping etc.
translated by 谷歌翻译
注释数据是用于培训和评估机器学习模型的自然语言处理中的重要成分。因此,注释具有高质量是非常理想的。但是,最近的工作表明,几个流行的数据集包含令人惊讶的注释错误或不一致之处。为了减轻此问题,多年来已经设计了许多注释错误检测方法。尽管研究人员表明他们的方法在新介绍的数据集上效果很好,但他们很少将其方法与以前的工作或同一数据集进行比较。这引起了人们对方法的一般表现的强烈关注,并且使他们的优势和劣势很难解决。因此,我们重新实现18种检测潜在注释错误的方法,并在9个英语数据集上对其进行评估,以进行文本分类以及令牌和跨度标签。此外,我们定义了统一的评估设置,包括注释错误检测任务,评估协议和一般最佳实践的新形式化。为了促进未来的研究和可重复性,我们将数据集和实施释放到易于使用和开源软件包中。
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
主动学习是减少训练深神经网络模型中数据量的流行方法。它的成功取决于选择有效的采集函数,该功能尚未根据其预期的信息进行排名。在不确定性抽样中,当前模型具有关于点类标签的不确定性是这种类型排名的主要标准。本文提出了一种在培训卷积神经网络(CNN)中进行不确定性采样的新方法。主要思想是使用CNN提取提取的特征表示作为培训总产品网络(SPN)的数据。由于SPN通常用于估计数据集的分布,因此它们非常适合估算类概率的任务,这些概率可以直接由标准采集函数(例如最大熵和变异比率)使用。此外,我们通过在SPN模型的帮助下通过权重增强了这些采集函数。这些权重使采集功能对数据点的可疑类标签的多样性更加敏感。我们的方法的有效性在对MNIST,时尚持续和CIFAR-10数据集的实验研究中得到了证明,我们将其与最先进的方法MC辍学和贝叶斯批次进行了比较。
translated by 谷歌翻译
As an important data selection schema, active learning emerges as the essential component when iterating an Artificial Intelligence (AI) model. It becomes even more critical given the dominance of deep neural network based models, which are composed of a large number of parameters and data hungry, in application. Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions. In this paper, we present a review of active learning through deep active learning approaches from the following perspectives: 1) technical advancements in active learning, 2) applications of active learning in computer vision, 3) industrial systems leveraging or with potential to leverage active learning for data iteration, 4) current limitations and future research directions. We expect this paper to clarify the significance of active learning in a modern AI model manufacturing process and to bring additional research attention to active learning. By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies by boosting model production at scale.
translated by 谷歌翻译
我们查看模型可解释性的特定方面:模型通常需要限制在大小上才能被认为是可解释的,例如,深度5的决策树比深度50中的一个更容易解释。但是,较小的模型也倾向于高偏见。这表明可解释性和准确性之间的权衡。我们提出了一种模型不可知论技术,以最大程度地减少这种权衡。我们的策略是首先学习甲骨文,这是培训数据上高度准确的概率模型。 Oracle预测的不确定性用于学习培训数据的抽样分布。然后,对使用此分布获得的数据样本进行了可解释的模型,通常会导致精确度明显更高。我们将抽样策略作为优化问题。我们的解决方案1具有以下关键的有利属性:(1)它使用固定数量的七个优化变量,而与数据的维度(2)无关,它是模型不可知的 - 因为可解释的模型和甲骨文都可能属于任意性模型家族(3)它具有模型大小的灵活概念,并且可以容纳向量大小(4)它是一个框架,使其能够从优化领域的进度中受益。我们还提出了以下有趣的观察结果:(a)通常,小型模型大小的最佳训练分布与测试分布不同; (b)即使可解释的模型和甲骨文来自高度截然不同的模型家族,也存在这种效果:我们通过使用封闭的复发单位网络作为甲骨文来提高决策树的序列分类精度,从而在文本分类任务上显示此效果。使用字符n-grams; (c)对于模型,我们的技术可用于确定给定样本量的最佳训练样本。
translated by 谷歌翻译
虽然深度学习(DL)是渴望数据的,并且通常依靠广泛的标记数据来提供良好的性能,但主动学习(AL)通过从未标记的数据中选择一小部分样本进行标签和培训来降低标签成本。因此,近年来,在有限的标签成本/预算下,深入的积极学习(DAL)是可行的解决方案,可在有限的标签成本/预算下最大化模型性能。尽管已经开发了大量的DAL方法并进行了各种文献综述,但在公平比较设置下对DAL方法的性能评估尚未可用。我们的工作打算填补这一空白。在这项工作中,我们通过重新实现19种引用的DAL方法来构建DAL Toolkit,即Deepal+。我们调查和分类与DAL相关的作品,并构建经常使用的数据集和DAL算法的比较实验。此外,我们探讨了影响DAL功效的一些因素(例如,批处理大小,训练过程中的时期数),这些因素为研究人员设计其DAL实验或执行DAL相关应用程序提供了更好的参考。
translated by 谷歌翻译
人工智能的最新趋势是将验证的模型用于语言和视觉任务,这些模型已经实现了非凡的表现,但也令人困惑。因此,以各种方式探索这些模型的能力对该领域至关重要。在本文中,我们探讨了模型的可靠性,在其中我们将可靠的模型定义为一个不仅可以实现强大的预测性能,而且在许多涉及不确定性(例如选择性预测,开放式设置识别)的决策任务上,在许多决策任务上表现出色,而且表现良好。强大的概括(例如,准确性和适当的评分规则,例如在分布数据集中和分发数据集上的对数可能性)和适应性(例如,主动学习,几乎没有射击不确定性)。我们设计了40个数据集的10种任务类型,以评估视觉和语言域上可靠性的不同方面。为了提高可靠性,我们分别开发了VIT-PLEX和T5-PLEX,分别针对视觉和语言方式扩展了大型模型。 PLEX极大地改善了跨可靠性任务的最先进,并简化了传统协议,因为它可以改善开箱即用的性能,并且不需要设计分数或为每个任务调整模型。我们演示了高达1B参数的模型尺寸的缩放效果,并预处理数据集大小最多4B示例。我们还展示了PLEX在具有挑战性的任务上的功能,包括零射门的开放式识别,主动学习和对话语言理解中的不确定性。
translated by 谷歌翻译
主动学习(AL)算法旨在识别注释的最佳数据子集,使得深神经网络(DNN)在此标记子集上培训时可以实现更好的性能。 AL特别有影响的工业规模设置,其中数据标签成本高,从业者使用各种工具来处理,以提高模型性能。最近自我监督预测(SSP)的成功突出了利用丰富的未标记数据促进模型性能的重要性。通过将AL与SSP结合起来,我们可以使用未标记的数据,同时标记和培训特别是信息样本。在这项工作中,我们研究了Imagenet上的AL和SSP的组合。我们发现小型玩具数据集上的性能 - 文献中的典型基准设置 - 由于活动学习者选择的类不平衡样本,而不是想象中的性能。在我们测试的现有基线中,各种小型和大规​​模设置的流行AL算法未能以随机抽样优于差异。为了解决类别不平衡问题,我们提出了平衡选择(基础),这是一种简单,可伸缩的AL算法,通过选择比现有方法更加平衡样本来始终如一地始终采样。我们的代码可用于:https://github.com/zeyademam/active_learning。
translated by 谷歌翻译
积极学习是一种降低标签成本以构建高质量机器学习模型的既定技术。主动学习的核心组件是确定应选择哪些数据来注释的采集功能。最先进的采集功能 - 更重要的是主动学习技术 - 已经旨在最大限度地提高清洁性能(例如,准确性)并忽视了鲁棒性,这是一种受到越来越受关注的重要品质。因此,主动学习产生准确但不强大的模型。在本文中,我们提出了一种积极的学习过程,集成了对抗性培训的积极学习过程 - 最熟悉的制作强大模型的方法。通过对11个采集函数的实证研究,4个数据集,6个DNN架构和15105培训的DNN,我们表明,强大的主动学习可以产生具有鲁棒性的模型(对抗性示例的准确性),范围从2.35 \%到63.85 \%,而标准主动学习系统地实现了可忽略不计的鲁棒性(小于0.20 \%)。然而,我们的研究还揭示了在稳健性方面,在准确性上表现良好的采集功能比随机抽样更糟糕。因此,我们检查了它背后的原因,并设计了一个新的采购功能,这些功能既可定位清洁的性能和鲁棒性。我们的采集功能 - 基于熵(DRE)的基于密度的鲁棒采样 - 优于鲁棒性的其他采集功能(包括随机),最高可达24.40 \%(特别是3.84 \%),同时仍然存在竞争力准确性。此外,我们证明了DRE适用于测试选择度量,用于模型再培训,并从所有比较功能中脱颖而出,高达8.21%的鲁棒性。
translated by 谷歌翻译
数据增强是通过转换为机器学习的人工创建数据的人工创建,是一个跨机器学习学科的研究领域。尽管它对于增加模型的概括功能很有用,但它还可以解决许多其他挑战和问题,从克服有限的培训数据到正规化目标到限制用于保护隐私的数据的数量。基于对数据扩展的目标和应用的精确描述以及现有作品的分类法,该调查涉及用于文本分类的数据增强方法,并旨在为研究人员和从业者提供简洁而全面的概述。我们将100多种方法划分为12种不同的分组,并提供最先进的参考文献来阐述哪种方法可以通过将它们相互关联,从而阐述了哪种方法。最后,提供可能构成未来工作的基础的研究观点。
translated by 谷歌翻译
Active learning aims to develop label-efficient algorithms by sampling the most representative queries to be labeled by an oracle. We describe a pool-based semisupervised active learning algorithm that implicitly learns this sampling mechanism in an adversarial manner. Unlike conventional active learning algorithms, our approach is task agnostic, i.e., it does not depend on the performance of the task for which we are trying to acquire labeled data. Our method learns a latent space using a variational autoencoder (VAE) and an adversarial network trained to discriminate between unlabeled and labeled data. The minimax game between the VAE and the adversarial network is played such that while the VAE tries to trick the adversarial network into predicting that all data points are from the labeled pool, the adversarial network learns how to discriminate between dissimilarities in the latent space. We extensively evaluate our method on various image classification and semantic segmentation benchmark datasets and establish a new state of the art on CIFAR10/100, Caltech-256, ImageNet, Cityscapes, and BDD100K. Our results demonstrate that our adversarial approach learns an effective low dimensional latent space in large-scale settings and provides for a computationally efficient sampling method. 1
translated by 谷歌翻译
Acquiring labeled data is challenging in many machine learning applications with limited budgets. Active learning gives a procedure to select the most informative data points and improve data efficiency by reducing the cost of labeling. The info-max learning principle maximizing mutual information such as BALD has been successful and widely adapted in various active learning applications. However, this pool-based specific objective inherently introduces a redundant selection and further requires a high computational cost for batch selection. In this paper, we design and propose a new uncertainty measure, Balanced Entropy Acquisition (BalEntAcq), which captures the information balance between the uncertainty of underlying softmax probability and the label variable. To do this, we approximate each marginal distribution by Beta distribution. Beta approximation enables us to formulate BalEntAcq as a ratio between an augmented entropy and the marginalized joint entropy. The closed-form expression of BalEntAcq facilitates parallelization by estimating two parameters in each marginal Beta distribution. BalEntAcq is a purely standalone measure without requiring any relational computations with other data points. Nevertheless, BalEntAcq captures a well-diversified selection near the decision boundary with a margin, unlike other existing uncertainty measures such as BALD, Entropy, or Mean Standard Deviation (MeanSD). Finally, we demonstrate that our balanced entropy learning principle with BalEntAcq consistently outperforms well-known linearly scalable active learning methods, including a recently proposed PowerBALD, a simple but diversified version of BALD, by showing experimental results obtained from MNIST, CIFAR-100, SVHN, and TinyImageNet datasets.
translated by 谷歌翻译
社会科学家经常将文本文档分类为使用结果标签作为实证研究的结果或预测指标。自动化文本分类已成为标准工具,因为它需要较少的人体编码。但是,学者们仍然需要许多人类标记的文件来培训自动分类器。为了降低标签成本,我们提出了一种新的文本分类算法,将概率模型与主动学习结合在一起。概率模型同时使用标记和未标记的数据,而主动学习集中在难以分类的文件上标记工作。我们的验证研究表明,我们的算法的分类性能与最先进的方法相当,而计算成本的一部分。此外,我们复制了两篇最近发表的文章,并得出相同的实质性结论,其中仅占这些研究中使用的原始标记数据的一小部分。我们提供ActiveText,一种开源软件来实现我们的方法。
translated by 谷歌翻译
The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often referred to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of attempts so far at handling uncertainty in general and formalizing this distinction in particular.
translated by 谷歌翻译
基于池的主动学习(AL)通过依次从大型未标记数据池中选择信息的未标记样本并从Oracle/Ontoter中查询标签,从而取得了巨大成功。但是,现有的AL采样策略可能在分布外(OOD)数据方案中无法很好地工作,其中未标记的数据池包含一些不属于目标任务类别的数据示例。在OOD数据情景下实现良好的AL性能是一项具有挑战性的任务,因为Al采样策略与OOD样本检测之间的自然冲突。 Al选择很难由当前基本分类器进行分类的数据(例如,预测类概率具有较高熵的样品),而OOD样品往往具有比分布更均匀的预测类概率(即高熵)(即高熵)(ID ) 数据。在本文中,我们提出了一种采样方案,即用于主动学习的蒙特 - 卡洛帕累托优化(POAL),该方案从未标记的数据库中选择了具有固定批次大小的未标记样品的最佳子集。我们将AL采样任务施加为多目标优化问题,因此我们基于两个冲突的目标利用Pareto优化:(1)正常的AL数据采样方案(例如,最大熵)和(2)作为OOD样本。实验结果表明其对经典机器学习(ML)和深度学习(DL)任务的有效性。
translated by 谷歌翻译