我们考虑了OOD概括的问题,其目标是训练在与训练分布不同的测试分布上表现良好的模型。已知深度学习模型在这种转变上是脆弱的,即使对于略有不同的测试分布,也可能遭受大量精度下降。我们提出了一种基于直觉的新方法 - 愚蠢的方法,即大量丰富特征的对抗性结合应提供鲁棒性。我们的方法仔细提炼了一位强大的老师的知识,该知识使用标准培训学习了几个判别特征,同时使用对抗性培训将其结合在一起。对标准的对抗训练程序进行了修改,以产生可以更好地指导学生的教师。我们评估DAFT在域床框架中的标准基准测试中,并证明DAFT比当前最新的OOD泛化方法取得了重大改进。 DAFT始终超过表现良好的ERM和蒸馏基线高达6%,对于较小的网络而言,其增长率更高。
translated by 谷歌翻译
Machine learning algorithms typically assume that the training and test samples come from the same distributions, i.e., in-distribution. However, in open-world scenarios, streaming big data can be Out-Of-Distribution (OOD), rendering these algorithms ineffective. Prior solutions to the OOD challenge seek to identify invariant features across different training domains. The underlying assumption is that these invariant features should also work reasonably well in the unlabeled target domain. By contrast, this work is interested in the domain-specific features that include both invariant features and features unique to the target domain. We propose a simple yet effective approach that relies on correlations in general regardless of whether the features are invariant or not. Our approach uses the most confidently predicted samples identified by an OOD base model (teacher model) to train a new model (student model) that effectively adapts to the target domain. Empirical evaluations on benchmark datasets show that the performance is improved over the SOTA by ~10-20%
translated by 谷歌翻译
Despite impressive success in many tasks, deep learning models are shown to rely on spurious features, which will catastrophically fail when generalized to out-of-distribution (OOD) data. Invariant Risk Minimization (IRM) is proposed to alleviate this issue by extracting domain-invariant features for OOD generalization. Nevertheless, recent work shows that IRM is only effective for a certain type of distribution shift (e.g., correlation shift) while it fails for other cases (e.g., diversity shift). Meanwhile, another thread of method, Adversarial Training (AT), has shown better domain transfer performance, suggesting that it has the potential to be an effective candidate for extracting domain-invariant features. This paper investigates this possibility by exploring the similarity between the IRM and AT objectives. Inspired by this connection, we propose Domainwise Adversarial Training (DAT), an AT-inspired method for alleviating distribution shift by domain-specific perturbations. Extensive experiments show that our proposed DAT can effectively remove domain-varying features and improve OOD generalization under both correlation shift and diversity shift.
translated by 谷歌翻译
深度神经网络易于对自然投入的离前事实制作,小而难以察觉的变化影响。对这些实例的最有效的防御机制是对逆脉训练在训练期间通过迭代最大化的损失来构建对抗性实例。然后训练该模型以最小化这些构建的实施例的损失。此最小最大优化需要更多数据,更大的容量模型和额外的计算资源。它还降低了模型的标准泛化性能。我们可以更有效地实现鲁棒性吗?在这项工作中,我们从知识转移的角度探讨了这个问题。首先,我们理论上展示了在混合增强的帮助下将鲁棒性从对接地训练的教师模型到学生模型的可转换性。其次,我们提出了一种新颖的鲁棒性转移方法,称为基于混合的激活信道图(MixacM)转移。 MixacM通过匹配未在没有昂贵的对抗扰动的匹配生成的激活频道地图将强大的教师转移到学生的鲁棒性。最后,对多个数据集的广泛实验和不同的学习情景显示我们的方法可以转移鲁棒性,同时还改善自然图像的概括。
translated by 谷歌翻译
尽管他们最近取得了成功,但在测试时遇到分配变化时,深层神经网络仍会继续表现不佳。最近,许多提出的方法试图通过将模型与推理之前的新分布对齐来解决。由于没有可用的标签,因此需要无监督的目标才能使模型适应观察到的测试数据。在本文中,我们提出了测试时间自我训练(测试):一种技术,该技术在测试时以某些源数据和新的数据分配为输入,并使用学生教师框架来学习不变且强大的表示形式。 。我们发现使用测试适应的模型可以显着改善基线测试时间适应算法。测试可以实现现代领域适应算法的竞争性能,同时自适应时访问5-10倍的数据。我们对两项任务进行了各种基准:对象检测和图像分割,并发现该模型适用于测试。我们发现测试设置了用于测试时间域适应算法的新最新技术。
translated by 谷歌翻译
分批归一化(BN)是一种无处不在的技术,用于训练深层神经网络,可加速其收敛以达到更高的准确性。但是,我们证明了BN具有根本的缺点:它激励该模型依赖于训练(内域)数据高度特定的低变义特征,从而损害了室外示例的概括性能。在这项工作中,我们首先表明在各种架构上删除BN层会导致较低的域外和腐败错误,而造成较高的内域错误,因此我们首先研究了这种现象。然后,我们提出了反平衡老师(CT),该方法利用与老师的老师一起利用同一模型的冷冻副本,通过通过一致性损失功能实质上调整其权重来实现学生网络对强大表示的学习。该正则化信号有助于CT在不可预见的数据变化中表现良好,即使没有从目标域中的信息如先前的工作中。从理论上讲,我们在过度参数化的线性回归设置中显示了为什么归一化导致模型对这种内域特征的依赖,并通过验证CT的功效来证明CT的功效,从而在稳健性基准(例如CIFAR-10-C,CIFAR-10-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100-C,CIFAR-100)上表现出了疗效。和VLCS。
translated by 谷歌翻译
由于许多微调预先训练的语言模型〜(PLMS)具有有希望的性能,因此慷慨地释放,研究了重用这些模型的更好方法至关重要,因为它可以大大降低再培训计算成本和潜在的环境副作用。在本文中,我们探索了一种小型模型重用范式,知识合并〜(ka)。如果没有人为注释,KA旨在将来自不同教师的知识合并到一个专门从事不同的分类问题中的知识,进入多功能的学生模型。实现这一目标,我们设计了模型不确定感知知识合并〜(Muka)框架,其使用Monte-Carlo辍学来识别潜在的足够教师,以估计金色监督指导学生。实验结果表明,Muka在基准数据集上实现了对基准的基本改进。进一步的分析表明,Muka可以通过多个教师模型,异构教师,甚至交叉数据集教师概括很好的复杂设置。
translated by 谷歌翻译
知识蒸馏是一种培训小型学生网络的流行技术,以模仿更大的教师模型,例如网络的集合。我们表明,虽然知识蒸馏可以改善学生泛化,但它通常不得如此普遍地工作:虽然在教师和学生的预测分布之间,甚至在学生容量的情况下,通常仍然存在令人惊讶的差异完美地匹配老师。我们认为优化的困难是为什么学生无法与老师匹配的关键原因。我们还展示了用于蒸馏的数据集的细节如何在学生与老师匹配的紧密关系中发挥作用 - 以及教师矛盾的教师并不总是导致更好的学生泛化。
translated by 谷歌翻译
为了在单一源领域的概括中取得成功,最大化合成域的多样性已成为最有效的策略之一。最近的许多成功都来自预先指定模型在培训期间暴露于多样性类型的方法,因此它最终可以很好地概括为新领域。但是,基于na \“基于多样性的增强也不能因为它们无法对大型域移动建模,或者因为预先指定的变换的跨度不能涵盖域概括中通常发生的转移类型。解决这个问题,我们提出了一个新颖的框架,该框架使用神经网络使用对抗学习的转换(ALT)来建模可欺骗分类器的合理但硬的图像转换。该网络是为每个批次的随机初始初始初始初始初始初始化的,并培训了固定数量的步骤。为了最大化分类错误。此外,我们在分类器对干净和转化的图像的预测之间实现一致性。通过广泛的经验分析,我们发现这种对抗性转换的新形式同时实现了多样性和硬度的目标,并超越了所有现有技术,以实现竞争性的所有技术单源域概括的基准。我们还显示了T HAT ALT可以自然地与现有的多样性模块合作,从而产生高度独特的源域,导致最先进的性能。
translated by 谷歌翻译
Mixup is a popular data augmentation technique based on creating new samples by linear interpolation between two given data samples, to improve both the generalization and robustness of the trained model. Knowledge distillation (KD), on the other hand, is widely used for model compression and transfer learning, which involves using a larger network's implicit knowledge to guide the learning of a smaller network. At first glance, these two techniques seem very different, however, we found that ``smoothness" is the connecting link between the two and is also a crucial attribute in understanding KD's interplay with mixup. Although many mixup variants and distillation methods have been proposed, much remains to be understood regarding the role of a mixup in knowledge distillation. In this paper, we present a detailed empirical study on various important dimensions of compatibility between mixup and knowledge distillation. We also scrutinize the behavior of the networks trained with a mixup in the light of knowledge distillation through extensive analysis, visualizations, and comprehensive experiments on image classification. Finally, based on our findings, we suggest improved strategies to guide the student network to enhance its effectiveness. Additionally, the findings of this study provide insightful suggestions to researchers and practitioners that commonly use techniques from KD. Our code is available at https://github.com/hchoi71/MIX-KD.
translated by 谷歌翻译
深度神经网络近似高度复杂功能的能力是其成功的关键。但是,这种好处是以巨大的模型大小为代价的,这挑战了其在资源受限环境中的部署。修剪是一种用于限制此问题的有效技术,但通常以降低准确性和对抗性鲁棒性为代价。本文解决了这些缺点,并引入了Deadwooding,这是一种新型的全球修剪技术,它利用了Lagrangian双重方法来鼓励模型稀疏性,同时保持准确性并确保鲁棒性。所得模型显示出在鲁棒性和准确性度量方面的最先进研究大大优于最先进的模型。
translated by 谷歌翻译
我们提出了针对微小神经网络的域概括(DG)的系统研究,这个问题对于机上机器学习应用至关重要,但在研究仅针对大型模型的文献中被忽略了。微小的神经网络具有较少的参数和较低的复杂性,因此不应以与DG应用的大型同行相同的方式进行训练。我们发现知识蒸馏是解决问题的有力候选者:它优于使用具有较大利润的大型模型开发的最先进的DG方法。此外,我们观察到,与域移动有关的测试数据上的教师学生绩效差距大于分布数据的绩效差距。为了改善微小神经网络而不增加部署成本的DG,我们提出了一个简单的想法,称为分布外知识蒸馏(OKD),该想法旨在教导学生如何处理(综合)分发数据和分布数据和被证明是解决问题的有前途的框架。我们还为创建DG数据集的可扩展方法(在上下文中称为域移动(DOSCO))提供了可扩展的方法,该数据可以在不大量努力的情况下按大规模应用大量数据。代码和模型以\ url {https://github.com/kaiyangzhou/on-device-dg}发布。
translated by 谷歌翻译
除了使用硬标签的标准监督学习外,通常在许多监督学习设置中使用辅助损失来改善模型的概括。例如,知识蒸馏增加了第二个教师模仿模型训练的损失,在该培训中,教师可能是一个验证的模型,可以输出比标签更丰富的分布。同样,在标记数据有限的设置中,弱标记信息以标签函数的形式使用。此处引入辅助损失来对抗标签函数,这些功能可能是基于嘈杂的规则的真实标签近似值。我们解决了学习以原则性方式结合这些损失的问题。我们介绍AMAL,该AMAL使用元学习在验证度量上学习实例特定的权重,以实现损失的最佳混合。在许多知识蒸馏和规则降解域中进行的实验表明,Amal在这些领域中对竞争基准的增长可显着。我们通过经验分析我们的方法,并分享有关其提供性能提升的机制的见解。
translated by 谷歌翻译
Often we wish to transfer representational knowledge from one neural network to another. Examples include distilling a large network into a smaller one, transferring knowledge from one sensory modality to a second, or ensembling a collection of models into a single estimator. Knowledge distillation, the standard approach to these problems, minimizes the KL divergence between the probabilistic outputs of a teacher and student network. We demonstrate that this objective ignores important structural knowledge of the teacher network. This motivates an alternative objective by which we train a student to capture significantly more information in the teacher's representation of the data. We formulate this objective as contrastive learning. Experiments demonstrate that our resulting new objective outperforms knowledge distillation and other cutting-edge distillers on a variety of knowledge transfer tasks, including single model compression, ensemble distillation, and cross-modal transfer. Our method sets a new state-of-the-art in many transfer tasks, and sometimes even outperforms the teacher network when combined with knowledge distillation.
translated by 谷歌翻译
各种预培训模型的涌入通过提供丰富的教师资源来增强知识蒸馏〜(KD)。同时,探索大型模型存储库以选择合适的教师并进一步提取其知识成为艰巨的挑战。当训练学生提供大量预先训练的教师,即“教师”时,标准KD未能克服两个障碍。首先,我们需要有效地寻找教师中最有贡献的老师,而不是为学生列举所有教师。其次,由于教师可能会在W.R.T.的不同任务上进行培训。学生,我们必须从更通用的标签空间中提取知识。本文研究了``教师蒸馏'',学生进行教师评估和广义知识再利用。我们利用最佳运输来为两个问题构建一个统一的目标,该目标弥合了语义差距并测量一对模型之间的相关性。这个目标可以选择最相关的老师,我们将相同的目标最小化,而不是学生参数,以便随后从选定的教师转移知识。在各种环境中的实验证明了我们提出的方法的简洁性和多功能性。
translated by 谷歌翻译
We demonstrate that self-learning techniques like entropy minimization and pseudo-labeling are simple and effective at improving performance of a deployed computer vision model under systematic domain shifts. We conduct a wide range of large-scale experiments and show consistent improvements irrespective of the model architecture, the pre-training technique or the type of distribution shift. At the same time, self-learning is simple to use in practice because it does not require knowledge or access to the original training data or scheme, is robust to hyperparameter choices, is straight-forward to implement and requires only a few adaptation epochs. This makes self-learning techniques highly attractive for any practitioner who applies machine learning algorithms in the real world. We present state-of-the-art adaptation results on CIFAR10-C (8.5% error), ImageNet-C (22.0% mCE), ImageNet-R (17.4% error) and ImageNet-A (14.8% error), theoretically study the dynamics of self-supervised adaptation methods and propose a new classification dataset (ImageNet-D) which is challenging even with adaptation.
translated by 谷歌翻译
在实现最先进的性能和在实际应用中负担得起的大型模型之间,计算机视觉的差异越来越大。在本文中,我们解决了这个问题,并显着弥合了这两种模型之间的差距。在我们的实证研究中,我们不一定要提出一种新方法,而是要努力确定一个可靠的有效食谱,以使最先进的大型模型在实践中负担得起。我们证明,当正确执行时,知识蒸馏可以成为减少大型尺寸而不损害其性能的强大工具。特别是,我们发现存在某些隐式设计选择,这可能会严重影响蒸馏的有效性。我们的关键贡献是对这些设计选择的明确识别,这些选择以前在文献中尚未阐明。我们通过一项全面的实证研究备份了我们的发现,在广泛的视觉数据集上展示了令人信服的结果,尤其是获得了最先进的Imagenet Resnet-50模型,该模型可实现82.8%的Top-1准确性。 。
translated by 谷歌翻译
最近证明,接受SGD训练的神经网络优先依赖线性预测的特征,并且可以忽略复杂的,同样可预测的功能。这种简单性偏见可以解释他们缺乏分布(OOD)的鲁棒性。学习任务越复杂,统计工件(即选择偏见,虚假相关性)的可能性就越大比学习的机制更简单。我们证明可以减轻简单性偏差并改善了OOD的概括。我们使用对其输入梯度对齐的惩罚来训练一组类似的模型以不同的方式拟合数据。我们从理论和经验上展示了这会导致学习更复杂的预测模式的学习。 OOD的概括从根本上需要超出I.I.D.示例,例如多个培训环境,反事实示例或其他侧面信息。我们的方法表明,我们可以将此要求推迟到独立的模型选择阶段。我们获得了SOTA的结果,可以在视觉域偏置数据和概括方面进行视觉识别。该方法 - 第一个逃避简单性偏见的方法 - 突出了需要更好地理解和控制深度学习中的归纳偏见。
translated by 谷歌翻译
知识蒸馏是将“知识”从大型模型(教师)转移到更紧凑的(学生)的过程,通常在模型压缩的背景下使用。当两个模型都具有相同的体系结构时,此过程称为自distillation。几项轶事表明,一个自灭的学生可以在持有的数据上胜过老师的表现。在这项工作中,我们系统地研究了许多设置。我们首先表明,即使有一个高度准确的老师,自我介绍也使学生在所有情况下都可以超越老师。其次,我们重新审视了(自我)蒸馏的现有理论解释,并确定矛盾的例子,揭示了这些解释的可能缺点。最后,我们通过损失景观几何形状的镜头为自我鉴定的动态提供了另一种解释。我们进行了广泛的实验,以表明自我验证会导致最小化的最小值,从而导致更好的概括。
translated by 谷歌翻译
我们经常在强大的机器学习中看到不良的权衡,其中分布(OOD)的精度与分布式(ID)的准确性不一致:通过删除伪造功能的专用技术获得的强大分类器通常具有更好的OOD,但ID较差,但ID较差。与通过ERM训练的标准分类器相比,准确性。在本文中,我们发现由ID校准的合奏(仅在ID数据上校准ID数据之后简单地整合标准和健壮的模型)优于ID和ID和OOD准确性。在11个自然分配移位数据集中,ID校准的合奏获得了两全其美的最佳:强大的ID准确性和OOD精度。我们在风格化的设置中分析了此方法,并确定了两个重要条件以使合奏执行良好的ID和OOD:(1)我们需要校准标准和可靠的模型(在ID数据上,因为OOD数据不可用),(2)OOD没有反相关的虚假特征。
translated by 谷歌翻译