我们提出了针对微小神经网络的域概括(DG)的系统研究,这个问题对于机上机器学习应用至关重要,但在研究仅针对大型模型的文献中被忽略了。微小的神经网络具有较少的参数和较低的复杂性,因此不应以与DG应用的大型同行相同的方式进行训练。我们发现知识蒸馏是解决问题的有力候选者:它优于使用具有较大利润的大型模型开发的最先进的DG方法。此外,我们观察到,与域移动有关的测试数据上的教师学生绩效差距大于分布数据的绩效差距。为了改善微小神经网络而不增加部署成本的DG,我们提出了一个简单的想法,称为分布外知识蒸馏(OKD),该想法旨在教导学生如何处理(综合)分发数据和分布数据和被证明是解决问题的有前途的框架。我们还为创建DG数据集的可扩展方法(在上下文中称为域移动(DOSCO))提供了可扩展的方法,该数据可以在不大量努力的情况下按大规模应用大量数据。代码和模型以\ url {https://github.com/kaiyangzhou/on-device-dg}发布。
translated by 谷歌翻译
对分布(OOD)数据的概括是人类自然的能力,但对于机器而言挑战。这是因为大多数学习算法强烈依赖于i.i.d.〜对源/目标数据的假设,这在域转移导致的实践中通常会违反。域的概括(DG)旨在通过仅使用源数据进行模型学习来实现OOD的概括。在过去的十年中,DG的研究取得了长足的进步,导致了广泛的方法论,例如,基于域的一致性,元学习,数据增强或合奏学习的方法,仅举几例;还在各个应用领域进行了研究,包括计算机视觉,语音识别,自然语言处理,医学成像和强化学习。在本文中,首次提供了DG中的全面文献综述,以总结过去十年来的发展。具体而言,我们首先通过正式定义DG并将其与其他相关领域(如域适应和转移学习)联系起来来涵盖背景。然后,我们对现有方法和理论进行了彻底的审查。最后,我们通过有关未来研究方向的见解和讨论来总结这项调查。
translated by 谷歌翻译
最近,已经提出了几种领域的概括(DG)方法,表现出令人鼓舞的性能,但是,几乎所有的都基于卷积神经网络(CNN)。研究视觉变压器(VIT)的DG性能(VIT)几乎没有进展,这挑战了CNN在标准基准测试基准上的至高无上,通常是基于I.I.D假设。这使VITS的现实部署令人怀疑。在本文中,我们试图探索解决DG问题的VIT。与CNN类似,VIT在分发场景中也挣扎,主要的罪魁祸首过于适合来源域。受VIT的模块化体系结构的启发,我们提出了一种简单的DG方法,用于VIT,以VIT的自我验证。它通过策划中间变压器块的非零熵监管信号来减少输入输出映射问题的学习来减少源域的过度拟合。此外,它不会引入任何新参数,并且可以无缝地插入不同VIT的模块化组成中。我们在五个具有挑战性的数据集中以不同的DG基准和各种VIT骨架表现出显着的性能提高。此外,我们报告了针对最近最新的DG方法的有利性能。我们的代码以及预培训的模型可在以下网址公开获取:https://github.com/maryam089/sdvit
translated by 谷歌翻译
知识蒸馏(KD)是一种有效的方法,可以将知识从大型“教师”网络转移到较小的“学生”网络。传统的KD方法需要大量标记的培训样本和白盒老师(可以访问参数)才能培训好学生。但是,这些资源并不总是在现实世界应用中获得。蒸馏过程通常发生在我们无法访问大量数据的外部政党方面,并且由于安全性和隐私问题,教师没有披露其参数。为了克服这些挑战,我们提出了一种黑盒子少的KD方法,以培训学生很少的未标记培训样本和一个黑盒老师。我们的主要思想是通过使用混合和有条件的变异自动编码器生成一组不同的分布合成图像来扩展训练集。这些合成图像及其从老师获得的标签用于培训学生。我们进行了广泛的实验,以表明我们的方法在图像分类任务上明显优于最近的SOTA/零射击KD方法。代码和型号可在以下网址找到:https://github.com/nphdang/fs-bbt
translated by 谷歌翻译
我们考虑了OOD概括的问题,其目标是训练在与训练分布不同的测试分布上表现良好的模型。已知深度学习模型在这种转变上是脆弱的,即使对于略有不同的测试分布,也可能遭受大量精度下降。我们提出了一种基于直觉的新方法 - 愚蠢的方法,即大量丰富特征的对抗性结合应提供鲁棒性。我们的方法仔细提炼了一位强大的老师的知识,该知识使用标准培训学习了几个判别特征,同时使用对抗性培训将其结合在一起。对标准的对抗训练程序进行了修改,以产生可以更好地指导学生的教师。我们评估DAFT在域床框架中的标准基准测试中,并证明DAFT比当前最新的OOD泛化方法取得了重大改进。 DAFT始终超过表现良好的ERM和蒸馏基线高达6%,对于较小的网络而言,其增长率更高。
translated by 谷歌翻译
在过去的几年中,深度学习取得了巨大的成功。但是,面对非IID情况,深度学习的表现可能会阻碍。域的概括(DG)使模型可以概括为看不见的测试分布,即学习域不变表示。在本文中,我们认为域不变的特征应起源于内部和相互侧面。内部不变性意味着可以通过单个域学习这些功能,并且该功能捕获了数据的内在语义,即在域内的属性,这是其他域的不可知论。相互不变性意味着可以通过多个域(跨域)学习这些特征,并且功能包含常见信息,即可转移的功能W.R.T.其他域。然后,我们为域不变特征探索提出了DIFEX。 DIFEX采用知识蒸馏框架来捕获高级傅立叶相,作为内部不变的特征,并将跨域相关对准作为相互不变的特征。我们进一步设计了探索损失,以增加功能多样性以更好地概括。对时间序列和视觉基准测试的广泛实验表明,所提出的DIFEX实现了最先进的性能。
translated by 谷歌翻译
域的概括(DG)研究了深度学习模型推广到训练分布的能力。在过去的十年中,文献已经大量填充了一系列培训方法,这些方法声称获得了更抽象和强大的数据表示以应对域的转移。最近的研究为DG提供了可再现的基准,指出了天真的经验风险最小化(ERM)对现有算法的有效性。然而,研究人员坚持使用相同过时的特征提取器,并且尚未注意不同骨干的影响。在本文中,我们从骨干开始,提出了对其内在概括能力的全面分析,迄今为止,研究界忽略了。我们评估了各种特征提取器,从标准残差解决方案到基于变压器的架构,发现大规模单域分类精度和DG功能之间的线性相关性。我们广泛的实验表明,通过采用竞争性骨干与有效的数据增强结合使用,普通ERM的表现优于最近的DG解决方案,并实现了最先进的准确性。此外,我们的其他定性研究表明,新型骨架提供了与同类样本更相似的表示,从而将特征空间中的不同域分开。这种概括能力的增强功能使DG算法的边缘空间为调查问题,提出了一个新的范式,将骨干放在聚光灯下,并鼓励在其顶部开发一致的算法。
translated by 谷歌翻译
知识蒸馏是一种培训小型学生网络的流行技术,以模仿更大的教师模型,例如网络的集合。我们表明,虽然知识蒸馏可以改善学生泛化,但它通常不得如此普遍地工作:虽然在教师和学生的预测分布之间,甚至在学生容量的情况下,通常仍然存在令人惊讶的差异完美地匹配老师。我们认为优化的困难是为什么学生无法与老师匹配的关键原因。我们还展示了用于蒸馏的数据集的细节如何在学生与老师匹配的紧密关系中发挥作用 - 以及教师矛盾的教师并不总是导致更好的学生泛化。
translated by 谷歌翻译
Mixup is a popular data augmentation technique based on creating new samples by linear interpolation between two given data samples, to improve both the generalization and robustness of the trained model. Knowledge distillation (KD), on the other hand, is widely used for model compression and transfer learning, which involves using a larger network's implicit knowledge to guide the learning of a smaller network. At first glance, these two techniques seem very different, however, we found that ``smoothness" is the connecting link between the two and is also a crucial attribute in understanding KD's interplay with mixup. Although many mixup variants and distillation methods have been proposed, much remains to be understood regarding the role of a mixup in knowledge distillation. In this paper, we present a detailed empirical study on various important dimensions of compatibility between mixup and knowledge distillation. We also scrutinize the behavior of the networks trained with a mixup in the light of knowledge distillation through extensive analysis, visualizations, and comprehensive experiments on image classification. Finally, based on our findings, we suggest improved strategies to guide the student network to enhance its effectiveness. Additionally, the findings of this study provide insightful suggestions to researchers and practitioners that commonly use techniques from KD. Our code is available at https://github.com/hchoi71/MIX-KD.
translated by 谷歌翻译
神经网络可以从单个图像中了解视觉世界的内容是什么?虽然它显然不能包含存在的可能对象,场景和照明条件 - 在所有可能的256 ^(3x224x224)224尺寸的方形图像中,它仍然可以在自然图像之前提供强大的。为了分析这一假设,我们通过通过监控掠夺教师的知识蒸馏来制定一种训练神经网络的培训神经网络。有了这个,我们发现上述问题的答案是:“令人惊讶的是,很多”。在定量术语中,我们在CiFar-10/100上找到了94%/ 74%的前1个精度,在想象中,通过将这种方法扩展到音频,84%的语音组合。在广泛的分析中,我们解除了增强,源图像和网络架构的选择,以及在从未见过熊猫的网络中发现“熊猫神经元”。这项工作表明,一个图像可用于推断成千上万的对象类,并激励关于增强和图像的基本相互作用的更新的研究议程。
translated by 谷歌翻译
常规的几杆分类(FSC)旨在识别出有限标记的数据的新课程中的样本。最近,已经提出了域泛化FSC(DG-FSC),目的是识别来自看不见的域的新型类样品。 DG-FSC由于基础类(用于培训)和新颖类(评估中遇到)之间的域移位,对许多模型构成了巨大的挑战。在这项工作中,我们为解决DG-FSC做出了两个新颖的贡献。我们的首要贡献是提出重生网络(BAN)情节培训,并全面研究其对DG-FSC的有效性。作为一种特定的知识蒸馏形式,已证明禁令可以通过封闭式设置来改善常规监督分类的概括。这种改善的概括促使我们研究了DG-FSC的禁令,我们表明禁令有望解决DG-FSC中遇到的域转移。在令人鼓舞的发现的基础上,我们的第二个(主要)贡献是提出很少的禁令,FS-Ban,这是DG-FSC的新型禁令方法。我们提出的FS-BAN包括新颖的多任务学习目标:相互正则化,不匹配的老师和元控制温度,这些目标都是专门设计的,旨在克服DG-FSC中的中心和独特挑战,即过度拟合和领域差异。我们分析了这些技术的不同设计选择。我们使用六个数据集和三个基线模型进行全面的定量和定性分析和评估。结果表明,我们提出的FS-BAN始终提高基线模型的概括性能,并达到DG-FSC的最先进的准确性。
translated by 谷歌翻译
域泛化(DG)被认为是泛广泛化的前面。我们提出了经验证据表明,DG泛化的主要原因是训练时存在多个域。此外,我们表明IID中的泛化方法对DG的泛化同样重要。量身定制的方法未能在传统的DG(TDG)评估中增加性能增益。我们的实验提示如果TDG已经在评估ood泛化方面存在的有用性?为了进一步加强我们的调查,我们提出了一种新颖的评估策略,Classwise DG(CWDG),在这里,每个班级,我们随机选择一个域并将其保留在一边进行测试。我们认为,这项基准测试更接近人类学习,并在现实世界方案中相关。反直观地,尽管在培训期间暴露于所有域,但CWDG比TDG评估更具挑战性。在解释观察的同时,我们的作品在探索新想法之前,我们的作品在DG问题上进行了更重要的分析。
translated by 谷歌翻译
机器学习系统通常假设训练和测试分布是相同的。为此,关键要求是开发可以概括到未经看不见的分布的模型。领域泛化(DG),即分销概括,近年来引起了越来越令人利益。域概括处理了一个具有挑战性的设置,其中给出了一个或几个不同但相关域,并且目标是学习可以概括到看不见的测试域的模型。多年来,域概括地区已经取得了巨大进展。本文提出了对该地区最近进步的首次审查。首先,我们提供了域泛化的正式定义,并讨论了几个相关领域。然后,我们彻底审查了与域泛化相关的理论,并仔细分析了泛化背后的理论。我们将最近的算法分为三个类:数据操作,表示学习和学习策略,并为每个类别详细介绍几种流行的算法。第三,我们介绍常用的数据集,应用程序和我们的开放源代码库进行公平评估。最后,我们总结了现有文学,并为未来提供了一些潜在的研究主题。
translated by 谷歌翻译
域泛化(DG)方法旨在开发概括到测试分布与训练数据不同的设置的模型。在本文中,我们专注于多源零拍DG的挑战性问题,其中来自多个源域的标记训练数据可用,但无法从目标域中访问数据。虽然这个问题已成为研究的重要话题,但令人惊讶的是,将所有源数据汇集在一起​​和培训单个分类器的简单解决方案在标准基准中具有竞争力。更重要的是,即使在不同域中明确地优化不变性的复杂方法也不一定提供对ERM的非微不足道的增益。在本文中,我们首次研究了预先指定的域标签和泛化性能之间的重要链接。使用动机案例研究和分布稳健优化算法的新变种,我们首先演示了如何推断的自定义域组可以通过数据集的原始域标签来实现一致的改进。随后,我们介绍了一种用于多域泛化,Muldens的一般方法,它使用基于ERM的深度合并骨干,并通过元优化算法执行隐式域重标。使用对多个标准基准测试的经验研究,我们表明Muldens不需要定制增强策略或特定于数据集的培训过程,始终如一地优于ERM,通过显着的边距,即使在比较时也会产生最先进的泛化性能对于利用域标签的现有方法。
translated by 谷歌翻译
Though convolutional neural networks (CNNs) have demonstrated remarkable ability in learning discriminative features, they often generalize poorly to unseen domains. Domain generalization aims to address this problem by learning from a set of source domains a model that is generalizable to any unseen domain. In this paper, a novel approach is proposed based on probabilistically mixing instancelevel feature statistics of training samples across source domains. Our method, termed MixStyle, is motivated by the observation that visual domain is closely related to image style (e.g., photo vs. sketch images). Such style information is captured by the bottom layers of a CNN where our proposed style-mixing takes place. Mixing styles of training instances results in novel domains being synthesized implicitly, which increase the domain diversity of the source domains, and hence the generalizability of the trained model. MixStyle fits into mini-batch training perfectly and is extremely easy to implement. The effectiveness of MixStyle is demonstrated on a wide range of tasks including category classification, instance retrieval and reinforcement learning.
translated by 谷歌翻译
我们研究无数据知识蒸馏(KD)进行单眼深度估计(MDE),该网络通过在教师学生框架下从训练有素的专家模型中压缩,同时缺乏目标领域的培训数据,从而学习了一个轻巧的网络,以实现现实世界深度感知。 。由于密集回归和图像识别之间的本质差异,因此以前的无数据KD方法不适用于MDE。为了加强现实世界中的适用性,在本文中,我们试图使用分布式模拟图像应用KD。主要的挑战是i)缺乏有关原始培训数据的对象分布的先前信息; ii)领域在现实世界和模拟之间的转移。为了应对第一个难度,我们应用对象图像混合以生成新的训练样本,以最大程度地覆盖目标域中对象的分布模式。为了解决第二个困难,我们建议利用一个有效学习的转换网络,以将模拟数据拟合到教师模型的特征分布中。我们评估了各种深度估计模型和两个不同数据集的建议方法。结果,我们的方法优于基线KD的优势,甚至在$ 1/6 $的图像中获得的性能略高,表现出了明显的优势。
translated by 谷歌翻译
本文研究了从预先训练的模型,尤其是蒙面自动编码器中提取知识的潜力。我们的方法很简单:除了优化掩盖输入的像素重建损失外,我们还将教师模型的中间特征图与学生模型的中间特征图之间的距离最小化。此设计导致一个计算高效的知识蒸馏框架,给定1)仅使用一个少量可见的补丁子集,2)(笨拙的)教师模型仅需要部分执行,\ ie,\ ie,在前几个中,向前传播输入层,用于获得中间特征图。与直接蒸馏微型模型相比,提炼预训练的模型显着改善了下游性能。例如,通过将知识从MAE预先训练的VIT-L提炼为VIT-B,我们的方法可实现84.0%的Imagenet Top-1精度,表现优于直接将微型VIT-L蒸馏的基线,降低1.2%。更有趣的是,我们的方法即使具有极高的掩盖率也可以从教师模型中进行鲁棒性蒸馏:例如,在蒸馏过程中仅可见十个斑块,我们的VIT-B具有竞争力的前1个Imagenet精度为83.6%,在95%的掩盖率中,只有十个斑块。 ;令人惊讶的是,它仍然可以通过仅四个可见斑(98%的掩盖率)积极训练来确保82.4%的Top-1 Imagenet精度。代码和模型可在https://github.com/ucsc-vlaa/dmae上公开获得。
translated by 谷歌翻译
知识蒸馏在模型压缩方面取得了显着的成就。但是,大多数现有方法需要原始的培训数据,而实践中的实际数据通常是不可用的,因为隐私,安全性和传输限制。为了解决这个问题,我们提出了一种有条件的生成数据无数据知识蒸馏(CGDD)框架,用于培训有效的便携式网络,而无需任何实际数据。在此框架中,除了使用教师模型中提取的知识外,我们将预设标签作为额外的辅助信息介绍以培训发电机。然后,训练有素的发生器可以根据需要产生指定类别的有意义的培训样本。为了促进蒸馏过程,除了使用常规蒸馏损失,我们将预设标签视为地面真理标签,以便学生网络直接由合成训练样本类别监督。此外,我们强制学生网络模仿教师模型的注意图,进一步提高了其性能。为了验证我们方法的优越性,我们设计一个新的评估度量称为相对准确性,可以直接比较不同蒸馏方法的有效性。培训的便携式网络通过提出的数据无数据蒸馏方法获得了99.63%,99.07%和99.84%的CIFAR10,CIFAR100和CALTECH101的相对准确性。实验结果表明了所提出的方法的优越性。
translated by 谷歌翻译
在实现最先进的性能和在实际应用中负担得起的大型模型之间,计算机视觉的差异越来越大。在本文中,我们解决了这个问题,并显着弥合了这两种模型之间的差距。在我们的实证研究中,我们不一定要提出一种新方法,而是要努力确定一个可靠的有效食谱,以使最先进的大型模型在实践中负担得起。我们证明,当正确执行时,知识蒸馏可以成为减少大型尺寸而不损害其性能的强大工具。特别是,我们发现存在某些隐式设计选择,这可能会严重影响蒸馏的有效性。我们的关键贡献是对这些设计选择的明确识别,这些选择以前在文献中尚未阐明。我们通过一项全面的实证研究备份了我们的发现,在广泛的视觉数据集上展示了令人信服的结果,尤其是获得了最先进的Imagenet Resnet-50模型,该模型可实现82.8%的Top-1准确性。 。
translated by 谷歌翻译
理想情况下,应概遍的视觉学习算法,用于在新目标环境中部署时处理任何看不见的域移位;和数据效率,通过使用尽可能少的标签来降低开发成本。为此,我们研究半监督域泛化(SSDG),旨在使用多源,部分标记的培训数据学习域广泛的模型。我们设计了两个基准,涵盖了两个相关领域,即域泛化(DG)和半监督学习(SSL)开发的最先进方法。我们发现,通过设计无法处理未标记数据的DG方法,在SSDG中使用有限的标签表现不佳; SSL方法,尤其是FixMatch,获得更好的结果,但仍远离使用完整标签培训的基本vanilla模型。我们提出了一种简单的方法,一种简单的方法,将FixMatch扩展到SSDG的几个新成分:1)随机模型,用于减少稀缺标签的过度拟合,2)多视图一致性学习,用于增强域泛化。尽管设计简洁,StyleAtch可以实现SSDG的显着改进。我们希望我们的方法和全面的基准可以为未来的概括和数据高效学习系统进行铺平。源代码以\ url {https://github.com/kaiyangzhou/ssdg-benchmark}释放。
translated by 谷歌翻译