实际结果表明,使用较小的恒定学习速率,接近一个的超参数的深度学习优化者,大批量大小可以找到最小化损失功能的深神经网络的模型参数。我们首先显示了理论上的证据,即动量方法(动量)和自适应力矩估计(ADAM)的表现很好,即理论表现度量的上限很小,恒定学习率很小,超级参数接近一个,并且是一个大的。批量大小。接下来,我们证明存在一个批处理大小,称为关键批次尺寸最小化随机的甲骨文(SFO)复杂性,这是随机梯度计算成本,一旦批次大小超过关键批次大小,SFO的复杂性就会增加。最后,我们提供了支持我们理论结果的数值结果。也就是说,数值结果表明,ADAM使用较小的恒定学习率,接近一个的超参数和最小化SFO复杂性的临界批次大小比动量和随机梯度下降(SGD)更快。
translated by 谷歌翻译
数值评估明确表明,对于深度学习优化器,如随机梯度下降,动量和自适应方法,培训深度神经网络的步骤所需的步骤数量,每个批次尺寸加倍,并且存在减少的区域返回超出批判性批量大小。在本文中,我们通过使用优化器的随机第一阶Oracle(SFO)复杂性的全球最小化器来确定实际的临界批次大小。为了证明实际临界批次大小的存在,我们设置了SFO复杂性的下限和上限,并证明了最小化下限和上限的意义上存在临界批量尺寸。该证据意味着,如果SFO复杂性适合下限和上限,则这些临界批量尺寸的存在演示了实际临界批量大小的存在。我们还讨论了SFO复杂性以适应下限和上限的条件,并提供支持我们理论结果的数值结果。
translated by 谷歌翻译
自适应方法(例如自适应力矩估计(ADAM)及其变体)的收敛性和收敛速率分析已被广泛研究以进行非convex优化。分析基于假设,即预期或经验的平均损失函数是Lipschitz平滑的(即其梯度是Lipschitz的连续),并且学习率取决于Lipschitz连续梯度的Lipschitz常数。同时,对亚当及其变体的数值评估已经澄清说,使用较小的恒定学习速率而不依赖Lipschitz常数和超级参数($ \ beta_1 $和$ \ beta_2 $)接近一个是有利的,这对于训练深神经网络是有利的。由于计算Lipschitz常数为NP-HARD,因此Lipschitz的平滑度条件是不现实的。本文提供了亚当的理论分析,而没有假设Lipschitz的平滑度条件,以弥合理论和实践之间的差距。主要的贡献是显示理论证据表明,亚当使用较小的学习率和接近一个的超级参数表现良好,而先前的理论结果全部用于接近零的超参数。我们的分析还导致发现亚当在大批量尺寸方面表现良好。此外,我们表明,当亚当使用学习率降低和接近一个的超级参数时,它的表现良好。
translated by 谷歌翻译
最近,随机梯度下降(SGD)及其变体已成为机器学习(ML)问题大规模优化的主要方法。已经提出了各种策略来调整步骤尺寸,从自适应步骤大小到启发式方法,以更改每次迭代中的步骤大小。此外,动力已被广泛用于ML任务以加速训练过程。然而,我们对它们的理论理解存在差距。在这项工作中,我们开始通过为一些启发式优化方法提供正式保证并提出改进的算法来缩小这一差距。首先,我们分析了凸面和非凸口设置的Adagrad(延迟Adagrad)步骤大小的广义版本,这表明这些步骤尺寸允许算法自动适应随机梯度的噪声水平。我们首次显示延迟Adagrad的足够条件,以确保梯度几乎融合到零。此外,我们对延迟的Adagrad及其在非凸面设置中的动量变体进行了高概率分析。其次,我们用指数级和余弦的步骤分析了SGD,在经验上取得了成功,但缺乏理论支持。我们在平滑和非凸的设置中为它们提供了最初的收敛保证,有或没有polyak-{\ l} ojasiewicz(pl)条件。我们还显示了它们在PL条件下适应噪声的良好特性。第三,我们研究动量方法的最后迭代。我们证明了SGD的最后一个迭代的凸设置中的第一个下限,并以恒定的动量。此外,我们研究了一类跟随基于领先的领导者的动量算法,并随着动量和收缩的更新而增加。我们表明,他们的最后一个迭代具有最佳的收敛性,用于无约束的凸随机优化问题。
translated by 谷歌翻译
亚当是训练深神经网络的最具影响力的自适应随机算法之一,即使在简单的凸面设置中,它也被指出是不同的。许多尝试,例如降低自适应学习率,采用较大的批量大小,结合了时间去相关技术,寻求类似的替代物,\ textit {etc。},以促进Adam-type算法融合。与现有方法相反,我们引入了另一种易于检查的替代条件,这仅取决于基础学习率的参数和历史二阶时刻的组合,以确保通用ADAM的全球融合以解决大型融合。缩放非凸随机优化。这种观察结果以及这种足够的条件,对亚当的差异产生了更深刻的解释。另一方面,在实践中,无需任何理论保证,广泛使用了迷你ADAM和分布式ADAM。我们进一步分析了分布式系统中的批次大小或节点的数量如何影响亚当的收敛性,从理论上讲,这表明迷你批次和分布式亚当可以通过使用较大的迷你批量或较大的大小来线性地加速节点的数量。最后,我们应用了通用的Adam和Mini Batch Adam,具有足够条件来求解反例并在各种真实世界数据集上训练多个神经网络。实验结果完全符合我们的理论分析。
translated by 谷歌翻译
随机多变最小化 - 最小化(SMM)是大多数变化最小化的经典原则的在线延伸,这包括采样I.I.D。来自固定数据分布的数据点,并最小化递归定义的主函数的主要替代。在本文中,我们引入了随机块大大化 - 最小化,其中替代品现在只能块多凸,在半径递减内的时间优化单个块。在SMM中的代理人放松标准的强大凸起要求,我们的框架在内提供了更广泛的适用性,包括在线CANDECOMP / PARAFAC(CP)字典学习,并且尤其是当问题尺寸大时产生更大的计算效率。我们对所提出的算法提供广泛的收敛性分析,我们在可能的数据流下派生,放松标准i.i.d。对数据样本的假设。我们表明,所提出的算法几乎肯定会收敛于速率$ O((\ log n)^ {1+ \ eps} / n ^ {1/2})$的约束下的非凸起物镜的静止点集合。实证丢失函数和$ O((\ log n)^ {1+ \ eps} / n ^ {1/4})$的预期丢失函数,其中$ n $表示处理的数据样本数。在一些额外的假设下,后一趋同率可以提高到$ o((\ log n)^ {1+ \ eps} / n ^ {1/2})$。我们的结果为一般马尔维亚数据设置提供了各种在线矩阵和张量分解算法的第一融合率界限。
translated by 谷歌翻译
我们提出了一类新的Langevin基础算法,它克服了当前用于深度学习模型的微调的流行自适应优化器的许多已知缺点。其支撑性理论依赖于欧拉多面近似对随机微分方程(SDES)的多边形近似的进步。结果,它继承了授权算法的稳定性属性,而它讨论了其他已知问题,例如,涉及其他已知问题。在神经网络中消失梯度。特别是,我们为这部小型课程的算法的融合性能提供了令人反感的分析和完全理论上,我们将其命名为$ \ varepsilon $ o poula(或简单地,opopoura)。最后,有几种实验呈现出不同类型的深度学习模型,其展示了opopoula在许多流行的自适应优化算法上的优越性。
translated by 谷歌翻译
在本文中,我们考虑了第一和二阶技术来解决机器学习中产生的连续优化问题。在一阶案例中,我们提出了一种从确定性或半确定性到随机二次正则化方法的转换框架。我们利用随机优化的两相性质提出了一种具有自适应采样和自适应步长的新型一阶算法。在二阶案例中,我们提出了一种新型随机阻尼L-BFGS方法,该方法可以在深度学习的高度非凸起背景下提高先前的算法。这两种算法都在众所周知的深度学习数据集上进行评估并表现出有希望的性能。
translated by 谷歌翻译
自Reddi等人以来。 2018年指出了亚当的分歧问题,已经设计了许多新变体以获得融合。但是,香草·亚当(Vanilla Adam)仍然非常受欢迎,并且在实践中效果很好。为什么理论和实践之间存在差距?我们指出,理论和实践的设置之间存在不匹配:Reddi等。 2018年选择亚当的超参数后选择问题,即$(\ beta_1,\ beta_2)$;虽然实际应用通常首先解决问题,然后调整$(\ beta_1,\ beta_2)$。由于这一观察,我们猜想只有当我们改变选择问题和超参数的顺序时,理论上的经验收敛才能是合理的。在这项工作中,我们确认了这一猜想。我们证明,当$ \ beta_2 $很大时,$ \ beta_1 <\ sqrt {\ beta_2} <1 $,Adam收集到关键点附近。邻居的大小是随机梯度方差的命题。在额外的条件(强烈生长条件)下,亚当收敛到关键点。随着$ \ beta_2 $的增加,我们的收敛结果可以覆盖[0,1)$中的任何$ \ beta_1 \,包括$ \ beta_1 = 0.9 $,这是深度学习库中的默认设置。我们的结果表明,亚当可以在广泛的超参数下收敛,而无需对其更新规则进行任何修改。据我们所知,我们是第一个证明这一结果的人,而没有强有力的假设,例如有限梯度。当$ \ beta_2 $很小时,我们进一步指出了一个$(\ beta_1,\ beta_2)$的大区域,亚当可以在其中偏离无限。我们的差异结果考虑与我们的收敛结果相同的设置,表明在增加$ \ beta_2 $时从差异到收敛的相变。这些正面和负面的结果可以提供有关如何调整亚当超级参数的建议。
translated by 谷歌翻译
在本文中,我们提出了具有能量和动量的随机梯度的SGEM,以基于起源于工作[AEGD:适应性梯度下降的能量下降的AEGD方法,以解决一大批一般的非凸随机优化问题。ARXIV:2010.05109]。SGEM同时结合了能量和动量,以继承其双重优势。我们表明,SGEM具有无条件的能量稳定性,并在一般的非convex随机设置中得出能量依赖性收敛速率,以及在线凸台设置中的遗憾。还提供了能量变量的较低阈值。我们的实验结果表明,SGEM的收敛速度比AEGD快,并且至少在训练某些深层神经网络方面概述了SGDM。
translated by 谷歌翻译
Adaptive optimization methods are well known to achieve superior convergence relative to vanilla gradient methods. The traditional viewpoint in optimization, particularly in convex optimization, explains this improved performance by arguing that, unlike vanilla gradient schemes, adaptive algorithms mimic the behavior of a second-order method by adapting to the global geometry of the loss function. We argue that in the context of neural network optimization, this traditional viewpoint is insufficient. Instead, we advocate for a local trajectory analysis. For iterate trajectories produced by running a generic optimization algorithm OPT, we introduce $R^{\text{OPT}}_{\text{med}}$, a statistic that is analogous to the condition number of the loss Hessian evaluated at the iterates. Through extensive experiments, we show that adaptive methods such as Adam bias the trajectories towards regions where $R^{\text{Adam}}_{\text{med}}$ is small, where one might expect faster convergence. By contrast, vanilla gradient methods like SGD bias the trajectories towards regions where $R^{\text{SGD}}_{\text{med}}$ is comparatively large. We complement these empirical observations with a theoretical result that provably demonstrates this phenomenon in the simplified setting of a two-layer linear network. We view our findings as evidence for the need of a new explanation of the success of adaptive methods, one that is different than the conventional wisdom.
translated by 谷歌翻译
我们的目标是使随机梯度$ \ sigma^2 $在随机梯度和(ii)问题依赖性常数中自适应(i)自适应。当最大程度地减少条件编号$ \ kappa $的平滑,强大的功能时,我们证明,$ t $ t $ toerations sgd的$ t $ toerations sgd具有指数降低的阶跃尺寸和对平滑度的知识可以实现$ \ tilde {o} \ left(\ exp) \ left(\ frac {-t} {\ kappa} \ right) + \ frac {\ sigma^2} {t} \ right)$ rate,而又不知道$ \ sigma^2 $。为了适应平滑度,我们使用随机线路搜索(SLS)并显示(通过上下距离),其SGD的SGD与SLS以所需的速率收敛,但仅针对溶液的邻域。另一方面,我们证明具有平滑度的离线估计值的SGD会收敛到最小化器。但是,其速率与估计误差成正比的速度减慢。接下来,我们证明具有Nesterov加速度和指数步骤尺寸(称为ASGD)的SGD可以实现接近最佳的$ \ tilde {o} \ left(\ exp \ left(\ frac {-t} {-t} {\ sqrt {\ sqrt {\ sqrt { \ kappa}}} \ right) + \ frac {\ sigma^2} {t} \ right)$ rate,而无需$ \ sigma^2 $。当与平滑度和强频率的离线估计值一起使用时,ASGD仍会收敛到溶液,尽管速度较慢。我们从经验上证明了指数级尺寸的有效性以及新型SLS的变体。
translated by 谷歌翻译
We show that parametric models trained by a stochastic gradient method (SGM) with few iterations have vanishing generalization error. We prove our results by arguing that SGM is algorithmically stable in the sense of Bousquet and Elisseeff. Our analysis only employs elementary tools from convex and continuous optimization. We derive stability bounds for both convex and non-convex optimization under standard Lipschitz and smoothness assumptions.Applying our results to the convex case, we provide new insights for why multiple epochs of stochastic gradient methods generalize well in practice. In the non-convex case, we give a new interpretation of common practices in neural networks, and formally show that popular techniques for training large deep models are indeed stability-promoting. Our findings conceptually underscore the importance of reducing training time beyond its obvious benefit.
translated by 谷歌翻译
我们提出了一种使用加权节点的联合学习方法,可以在其中修改权重以在单独的验证集上优化模型的性能。该问题被称为双重优化,其中内部问题是加权节点的联合学习问题,外部问题着重于基于从内部问题返回的模型的验证性能优化权重。沟通效率的联合优化算法旨在解决此双重优化问题。在遇到错误的假设下,我们分析了输出模型的概括性能,并识别我们的方法在理论上优于训练模型,而仅在本地训练和使用静态且均匀分布的权重进行联合学习。
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
古典统计学习理论表示,拟合太多参数导致过度舒服和性能差。尽管大量参数矛盾,但是现代深度神经网络概括了这一发现,并构成了解释深度学习成功的主要未解决的问题。随机梯度下降(SGD)引起的隐式正规被认为是重要的,但其特定原则仍然是未知的。在这项工作中,我们研究了当地最小值周围的能量景观的局部几何学如何影响SGD的统计特性,具有高斯梯度噪声。我们争辩说,在合理的假设下,局部几何形状力强制SGD保持接近低维子空间,这会引起隐式正则化并导致深神经网络的泛化误差界定更严格的界限。为了获得神经网络的泛化误差界限,我们首先引入局部最小值周围的停滞迹象,并施加人口风险的局部基本凸性财产。在这些条件下,推导出SGD的下界,以保留在这些停滞套件中。如果发生停滞,我们会导出涉及权重矩阵的光谱规范的深神经网络的泛化误差的界限,但不是网络参数的数量。从技术上讲,我们的证据基于控制SGD中的参数值的变化以及基于局部最小值周围的合适邻域的熵迭代的参数值和局部均匀收敛。我们的工作试图通过统一收敛更好地连接非凸优化和泛化分析。
translated by 谷歌翻译
我们考虑由一般随机序列驱动的随机梯度下降(SGD)算法,包括I.I.D噪声和随机行走,在任意图上等等;并以渐近意义进行分析。具体而言,我们采用了“效率排序”的概念,这是一种分析的工具,用于比较马尔可夫链蒙特卡洛(MCMC)采样器的性能,以sgd算法的形式以与量表矩阵相关的loewner订购形式长期。使用此顺序,我们表明对MCMC采样更有效的输入序列也导致限制中SGD算法的误差的较小协方差。这也表明,当受到更有效的链驱动时,任意加权的SGD迭代的MSE迭代会变小。我们的发现在分散的优化和群学习等应用程序中特别感兴趣,其中SGD是在基础通信图上以随机步行方式实施的,以解决成本问题和/或数据隐私。我们证明了某些非马克维亚过程如何在基于典型的混合时间的非轴突界限上是棘手的,在SGD的效率订购意义上,可以超越其马尔可夫对应物。我们通过将其应用于梯度下降,并以洗牌和小批量梯度下降将其应用于梯度下降,从而显示了我们的方法的实用性,从而在统一框架下重申了现有文献的关键结果。从经验上讲,我们还观察到SGD的变体(例如加速SGD和Adam)的效率排序,开辟了将我们的效率订购概念扩展到更广泛的随机优化算法的可能性。
translated by 谷歌翻译
随机梯度下降(SGD)的梯度噪声被认为是在其性质中发挥关键作用(例如,逃离低潜在点和正则化)。过去的研究表明,通过迷你匹配完成的SGD错误的协方差在确定其正则化并逃离低潜在点时起着关键作用。然而,探索了误差的分布量影响了算法的行为。在该领域的一些新研究的动机,我们通过迷你匹配具有相同的SGD的平均值和协方差结构的噪声类别证明了普遍性的结果具有类似的性质。我们主要考虑由Wu等人引入的乘法随机梯度下降(M-SGD)算法。,它具有比通过小拟场完成的SGD算法更普通的噪声类。我们主要相对于通过小匹匹配对应于SGD的随机微分方程来建立非因素范围。我们还表明,M-SGD错误大约是M-SGD算法的任何固定点的缩放高斯分布。我们还建立了强凸的制度中M-SGD算法的收敛的界限。
translated by 谷歌翻译
非凸优化的传统分析通常取决于平滑度的假设,即要求梯度为Lipschitz。但是,最近的证据表明,这种平滑度条件并未捕获一些深度学习目标功能的特性,包括涉及复发性神经网络和LSTM的函数。取而代之的是,他们满足了更轻松的状况,并具有潜在的无界光滑度。在这个轻松的假设下,从理论和经验上表明,倾斜的SGD比香草具有优势。在本文中,我们表明,在解决此类情况时,剪辑对于ADAM型算法是不可或缺的:从理论上讲,我们证明了广义标志GD算法可以获得与带有剪辑的SGD相似的收敛速率,但根本不需要显式剪辑。一端的这个算法家族恢复了符号,另一端与受欢迎的亚当算法非常相似。我们的分析强调了动量在分析符号类型和ADAM型算法中发挥作用的关键作用:它不仅降低了噪声的影响,因此在先前的符号分析中消除了大型迷你批次的需求显着降低了无界平滑度和梯度规范的影响。我们还将这些算法与流行的优化器进行了比较,在一组深度学习任务上,观察到我们可以在击败其他人的同时匹配亚当的性能。
translated by 谷歌翻译
Nonconvex optimization is central in solving many machine learning problems, in which block-wise structure is commonly encountered. In this work, we propose cyclic block coordinate methods for nonconvex optimization problems with non-asymptotic gradient norm guarantees. Our convergence analysis is based on a gradient Lipschitz condition with respect to a Mahalanobis norm, inspired by a recent progress on cyclic block coordinate methods. In deterministic settings, our convergence guarantee matches the guarantee of (full-gradient) gradient descent, but with the gradient Lipschitz constant being defined w.r.t.~the Mahalanobis norm. In stochastic settings, we use recursive variance reduction to decrease the per-iteration cost and match the arithmetic operation complexity of current optimal stochastic full-gradient methods, with a unified analysis for both finite-sum and infinite-sum cases. We further prove the faster, linear convergence of our methods when a Polyak-{\L}ojasiewicz (P{\L}) condition holds for the objective function. To the best of our knowledge, our work is the first to provide variance-reduced convergence guarantees for a cyclic block coordinate method. Our experimental results demonstrate the efficacy of the proposed variance-reduced cyclic scheme in training deep neural nets.
translated by 谷歌翻译