数值评估明确表明,对于深度学习优化器,如随机梯度下降,动量和自适应方法,培训深度神经网络的步骤所需的步骤数量,每个批次尺寸加倍,并且存在减少的区域返回超出批判性批量大小。在本文中,我们通过使用优化器的随机第一阶Oracle(SFO)复杂性的全球最小化器来确定实际的临界批次大小。为了证明实际临界批次大小的存在,我们设置了SFO复杂性的下限和上限,并证明了最小化下限和上限的意义上存在临界批量尺寸。该证据意味着,如果SFO复杂性适合下限和上限,则这些临界批量尺寸的存在演示了实际临界批量大小的存在。我们还讨论了SFO复杂性以适应下限和上限的条件,并提供支持我们理论结果的数值结果。
translated by 谷歌翻译
实际结果表明,使用较小的恒定学习速率,接近一个的超参数的深度学习优化者,大批量大小可以找到最小化损失功能的深神经网络的模型参数。我们首先显示了理论上的证据,即动量方法(动量)和自适应力矩估计(ADAM)的表现很好,即理论表现度量的上限很小,恒定学习率很小,超级参数接近一个,并且是一个大的。批量大小。接下来,我们证明存在一个批处理大小,称为关键批次尺寸最小化随机的甲骨文(SFO)复杂性,这是随机梯度计算成本,一旦批次大小超过关键批次大小,SFO的复杂性就会增加。最后,我们提供了支持我们理论结果的数值结果。也就是说,数值结果表明,ADAM使用较小的恒定学习率,接近一个的超参数和最小化SFO复杂性的临界批次大小比动量和随机梯度下降(SGD)更快。
translated by 谷歌翻译
自适应方法(例如自适应力矩估计(ADAM)及其变体)的收敛性和收敛速率分析已被广泛研究以进行非convex优化。分析基于假设,即预期或经验的平均损失函数是Lipschitz平滑的(即其梯度是Lipschitz的连续),并且学习率取决于Lipschitz连续梯度的Lipschitz常数。同时,对亚当及其变体的数值评估已经澄清说,使用较小的恒定学习速率而不依赖Lipschitz常数和超级参数($ \ beta_1 $和$ \ beta_2 $)接近一个是有利的,这对于训练深神经网络是有利的。由于计算Lipschitz常数为NP-HARD,因此Lipschitz的平滑度条件是不现实的。本文提供了亚当的理论分析,而没有假设Lipschitz的平滑度条件,以弥合理论和实践之间的差距。主要的贡献是显示理论证据表明,亚当使用较小的学习率和接近一个的超级参数表现良好,而先前的理论结果全部用于接近零的超参数。我们的分析还导致发现亚当在大批量尺寸方面表现良好。此外,我们表明,当亚当使用学习率降低和接近一个的超级参数时,它的表现良好。
translated by 谷歌翻译
最近,随机梯度下降(SGD)及其变体已成为机器学习(ML)问题大规模优化的主要方法。已经提出了各种策略来调整步骤尺寸,从自适应步骤大小到启发式方法,以更改每次迭代中的步骤大小。此外,动力已被广泛用于ML任务以加速训练过程。然而,我们对它们的理论理解存在差距。在这项工作中,我们开始通过为一些启发式优化方法提供正式保证并提出改进的算法来缩小这一差距。首先,我们分析了凸面和非凸口设置的Adagrad(延迟Adagrad)步骤大小的广义版本,这表明这些步骤尺寸允许算法自动适应随机梯度的噪声水平。我们首次显示延迟Adagrad的足够条件,以确保梯度几乎融合到零。此外,我们对延迟的Adagrad及其在非凸面设置中的动量变体进行了高概率分析。其次,我们用指数级和余弦的步骤分析了SGD,在经验上取得了成功,但缺乏理论支持。我们在平滑和非凸的设置中为它们提供了最初的收敛保证,有或没有polyak-{\ l} ojasiewicz(pl)条件。我们还显示了它们在PL条件下适应噪声的良好特性。第三,我们研究动量方法的最后迭代。我们证明了SGD的最后一个迭代的凸设置中的第一个下限,并以恒定的动量。此外,我们研究了一类跟随基于领先的领导者的动量算法,并随着动量和收缩的更新而增加。我们表明,他们的最后一个迭代具有最佳的收敛性,用于无约束的凸随机优化问题。
translated by 谷歌翻译
亚当是训练深神经网络的最具影响力的自适应随机算法之一,即使在简单的凸面设置中,它也被指出是不同的。许多尝试,例如降低自适应学习率,采用较大的批量大小,结合了时间去相关技术,寻求类似的替代物,\ textit {etc。},以促进Adam-type算法融合。与现有方法相反,我们引入了另一种易于检查的替代条件,这仅取决于基础学习率的参数和历史二阶时刻的组合,以确保通用ADAM的全球融合以解决大型融合。缩放非凸随机优化。这种观察结果以及这种足够的条件,对亚当的差异产生了更深刻的解释。另一方面,在实践中,无需任何理论保证,广泛使用了迷你ADAM和分布式ADAM。我们进一步分析了分布式系统中的批次大小或节点的数量如何影响亚当的收敛性,从理论上讲,这表明迷你批次和分布式亚当可以通过使用较大的迷你批量或较大的大小来线性地加速节点的数量。最后,我们应用了通用的Adam和Mini Batch Adam,具有足够条件来求解反例并在各种真实世界数据集上训练多个神经网络。实验结果完全符合我们的理论分析。
translated by 谷歌翻译
在本文中,我们考虑了第一和二阶技术来解决机器学习中产生的连续优化问题。在一阶案例中,我们提出了一种从确定性或半确定性到随机二次正则化方法的转换框架。我们利用随机优化的两相性质提出了一种具有自适应采样和自适应步长的新型一阶算法。在二阶案例中,我们提出了一种新型随机阻尼L-BFGS方法,该方法可以在深度学习的高度非凸起背景下提高先前的算法。这两种算法都在众所周知的深度学习数据集上进行评估并表现出有希望的性能。
translated by 谷歌翻译
训练深神经网络(DNNS)是机器学习中的一个重要且具有挑战性的优化问题,由于其非凸度和不可分割的结构。交替的最小化方法(AM)方法分割了DNN的组成结构,并引起了深度学习和优化社区的极大兴趣。在本文中,我们提出了一个统一的框架,用于分析AM型网络培训方法的收敛速率。我们的分析基于$ j $ step的足够减少条件和Kurdyka-lojasiewicz(KL)属性,该属性放松了设计下降算法的要求。如果KL Exponent $ \ theta $在$ [0,1)$方面显示详细的本地收敛率。此外,在更强大的$ j $步骤中讨论了本地R线性收敛。
translated by 谷歌翻译
我们认为随机梯度下降及其在繁殖内核希尔伯特空间中二进制分类问题的平均变体。在使用损失函数的一致性属性的传统分析中,众所周知,即使在条件标签概率上假设低噪声状态时,预期的分类误差也比预期风险更慢。因此,最终的速率为sublinear。因此,重要的是要考虑是否可以实现预期分类误差的更快收敛。在最近的研究中,随机梯度下降的指数收敛速率在强烈的低噪声条件下显示,但前提是理论分析仅限于平方损耗函数,这对于二元分类任务来说是不足的。在本文中,我们在随机梯度下降的最后阶段中显示了预期分类误差的指数收敛性,用于在相似的假设下进行一类宽类可区分的凸损失函数。至于平均的随机梯度下降,我们表明相同的收敛速率来自训练的早期阶段。在实验中,我们验证了对$ L_2 $调查的逻辑回归的分析。
translated by 谷歌翻译
我们研究随机梯度下降(SGD)动态轨迹的统计特性。我们将Mini-Batch SGD和动量SGD视为随机微分方程(SDES)。我们利用了SDE的连续制定和Fokker-Planck方程的理论,在逃避现象和大批次和尖锐最小值的关系中开发新结果。特别是,我们发现随机过程解决方案倾向于会聚到渐渐的最小值,而无论渐近状态中的批量大小如何。但是,收敛速度严格被证明依赖于批量尺寸。这些结果经验验证了各种数据集和模型。
translated by 谷歌翻译
我们提出了一类新的Langevin基础算法,它克服了当前用于深度学习模型的微调的流行自适应优化器的许多已知缺点。其支撑性理论依赖于欧拉多面近似对随机微分方程(SDES)的多边形近似的进步。结果,它继承了授权算法的稳定性属性,而它讨论了其他已知问题,例如,涉及其他已知问题。在神经网络中消失梯度。特别是,我们为这部小型课程的算法的融合性能提供了令人反感的分析和完全理论上,我们将其命名为$ \ varepsilon $ o poula(或简单地,opopoura)。最后,有几种实验呈现出不同类型的深度学习模型,其展示了opopoula在许多流行的自适应优化算法上的优越性。
translated by 谷歌翻译
古典统计学习理论表示,拟合太多参数导致过度舒服和性能差。尽管大量参数矛盾,但是现代深度神经网络概括了这一发现,并构成了解释深度学习成功的主要未解决的问题。随机梯度下降(SGD)引起的隐式正规被认为是重要的,但其特定原则仍然是未知的。在这项工作中,我们研究了当地最小值周围的能量景观的局部几何学如何影响SGD的统计特性,具有高斯梯度噪声。我们争辩说,在合理的假设下,局部几何形状力强制SGD保持接近低维子空间,这会引起隐式正则化并导致深神经网络的泛化误差界定更严格的界限。为了获得神经网络的泛化误差界限,我们首先引入局部最小值周围的停滞迹象,并施加人口风险的局部基本凸性财产。在这些条件下,推导出SGD的下界,以保留在这些停滞套件中。如果发生停滞,我们会导出涉及权重矩阵的光谱规范的深神经网络的泛化误差的界限,但不是网络参数的数量。从技术上讲,我们的证据基于控制SGD中的参数值的变化以及基于局部最小值周围的合适邻域的熵迭代的参数值和局部均匀收敛。我们的工作试图通过统一收敛更好地连接非凸优化和泛化分析。
translated by 谷歌翻译
随机多变最小化 - 最小化(SMM)是大多数变化最小化的经典原则的在线延伸,这包括采样I.I.D。来自固定数据分布的数据点,并最小化递归定义的主函数的主要替代。在本文中,我们引入了随机块大大化 - 最小化,其中替代品现在只能块多凸,在半径递减内的时间优化单个块。在SMM中的代理人放松标准的强大凸起要求,我们的框架在内提供了更广泛的适用性,包括在线CANDECOMP / PARAFAC(CP)字典学习,并且尤其是当问题尺寸大时产生更大的计算效率。我们对所提出的算法提供广泛的收敛性分析,我们在可能的数据流下派生,放松标准i.i.d。对数据样本的假设。我们表明,所提出的算法几乎肯定会收敛于速率$ O((\ log n)^ {1+ \ eps} / n ^ {1/2})$的约束下的非凸起物镜的静止点集合。实证丢失函数和$ O((\ log n)^ {1+ \ eps} / n ^ {1/4})$的预期丢失函数,其中$ n $表示处理的数据样本数。在一些额外的假设下,后一趋同率可以提高到$ o((\ log n)^ {1+ \ eps} / n ^ {1/2})$。我们的结果为一般马尔维亚数据设置提供了各种在线矩阵和张量分解算法的第一融合率界限。
translated by 谷歌翻译
我们的目标是使随机梯度$ \ sigma^2 $在随机梯度和(ii)问题依赖性常数中自适应(i)自适应。当最大程度地减少条件编号$ \ kappa $的平滑,强大的功能时,我们证明,$ t $ t $ toerations sgd的$ t $ toerations sgd具有指数降低的阶跃尺寸和对平滑度的知识可以实现$ \ tilde {o} \ left(\ exp) \ left(\ frac {-t} {\ kappa} \ right) + \ frac {\ sigma^2} {t} \ right)$ rate,而又不知道$ \ sigma^2 $。为了适应平滑度,我们使用随机线路搜索(SLS)并显示(通过上下距离),其SGD的SGD与SLS以所需的速率收敛,但仅针对溶液的邻域。另一方面,我们证明具有平滑度的离线估计值的SGD会收敛到最小化器。但是,其速率与估计误差成正比的速度减慢。接下来,我们证明具有Nesterov加速度和指数步骤尺寸(称为ASGD)的SGD可以实现接近最佳的$ \ tilde {o} \ left(\ exp \ left(\ frac {-t} {-t} {\ sqrt {\ sqrt {\ sqrt { \ kappa}}} \ right) + \ frac {\ sigma^2} {t} \ right)$ rate,而无需$ \ sigma^2 $。当与平滑度和强频率的离线估计值一起使用时,ASGD仍会收敛到溶液,尽管速度较慢。我们从经验上证明了指数级尺寸的有效性以及新型SLS的变体。
translated by 谷歌翻译
We initiate a formal study of reproducibility in optimization. We define a quantitative measure of reproducibility of optimization procedures in the face of noisy or error-prone operations such as inexact or stochastic gradient computations or inexact initialization. We then analyze several convex optimization settings of interest such as smooth, non-smooth, and strongly-convex objective functions and establish tight bounds on the limits of reproducibility in each setting. Our analysis reveals a fundamental trade-off between computation and reproducibility: more computation is necessary (and sufficient) for better reproducibility.
translated by 谷歌翻译
本文评价用机器学习问题的数值优化方法。由于机器学习模型是高度参数化的,我们专注于适合高维优化的方法。我们在二次模型上构建直觉,以确定哪种方法适用于非凸优化,并在凸函数上开发用于这种方法的凸起函数。随着随机梯度下降和动量方法的这种理论基础,我们试图解释为什么机器学习领域通常使用的方法非常成功。除了解释成功的启发式之外,最后一章还提供了对更多理论方法的广泛审查,这在实践中并不像惯例。所以在某些情况下,这项工作试图回答这个问题:为什么默认值中包含的默认TensorFlow优化器?
translated by 谷歌翻译
经典的Adagrad方法通过除以平方梯度总和的平方根来适应学习率。由于分母上的此总和正在增加,因此该方法只能随着时间的流逝而降低步进大小,并且需要仔细调整学习率的超级参数。为了克服这一限制,我们介绍了Gradagrad,这是同一家庭中一种自然增长或缩小基于分母中不同积累率的学习率的方法,该方法既可以增加又可以减少。我们表明,它遵守与Adagrad相似的收敛速率,并通过实验证明了其非符号酮适应能力。
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
与SGD相比,Adam等自适应梯度方法允许对现代深层网络(尤其是大型语言模型)进行强有力的培训。但是,适应性的使用不仅是为了额外的记忆,而且还提出了一个基本问题:SGD等非自适应方法可以享受类似的好处吗?在本文中,我们通过提议通过以下一般配方提议实现健壮和记忆效率的培训来为这个问题提供肯定的答案:(1)修改体系结构并使IT规模不变,即参数规模不影响。网络的输出,(2)使用SGD和重量衰减的训练,以及(3)剪辑全局梯度标准与重量标准成比例成正比,乘以$ \ sqrt {\ tfrac {\ tfrac {2 \ lambda} {\ eta}} {\ eta}}} $, $ \ eta $是学习率,而$ \ lambda $是权重腐烂。我们表明,这种一般方法是通过证明其收敛性仅取决于初始化和损失的规模来重新恢复参数和丢失的强大,而标准SGD甚至可能不会收敛许多初始化。在我们的食谱之后,我们设计了一个名为Sibert的Bert版本的比例不变版本,该版本仅由Vanilla SGD进行训练时,可以实现与Bert在下游任务中受过自适应方法训练的BERT相当的性能。
translated by 谷歌翻译
非滑动非概念优化问题在机器学习和业务决策中广泛出现,而两个核心挑战阻碍了具有有限时间收敛保证的有效解决方案方法的开发:缺乏计算可触及的最佳标准和缺乏计算功能强大的口腔。本文的贡献是两个方面。首先,我们建立了著名的Goldstein Subdferential〜 \ Citep {Goldstein-1977-Optimization}与均匀平滑之间的关系,从而为设计有限时间融合到一组无梯度的方法的基础和直觉提供了基础和直觉戈德斯坦固定点。其次,我们提出了无梯度方法(GFM)和随机GFM,用于解决一类非平滑非凸优化问题,并证明它们两个都可以返回$(\ delta,\ epsilon)$ - Lipschitz函数的Goldstein Sentary Point $ f $以$ o(d^{3/2} \ delta^{ - 1} \ epsilon^{ - 4})$的预期收敛速率为$ o(d^{3/2} \ delta^{ - 1} \ epsilon^{ - 4})$,其中$ d $是问题维度。还提出了两阶段版本的GFM和SGFM,并被证明可以改善大泄漏结果。最后,我们证明了2-SGFM使用\ textsc {minst}数据集对训练Relu神经网络的有效性。
translated by 谷歌翻译
在本文中,我们提出了具有能量和动量的随机梯度的SGEM,以基于起源于工作[AEGD:适应性梯度下降的能量下降的AEGD方法,以解决一大批一般的非凸随机优化问题。ARXIV:2010.05109]。SGEM同时结合了能量和动量,以继承其双重优势。我们表明,SGEM具有无条件的能量稳定性,并在一般的非convex随机设置中得出能量依赖性收敛速率,以及在线凸台设置中的遗憾。还提供了能量变量的较低阈值。我们的实验结果表明,SGEM的收敛速度比AEGD快,并且至少在训练某些深层神经网络方面概述了SGDM。
translated by 谷歌翻译