亚当是训练深神经网络的最具影响力的自适应随机算法之一,即使在简单的凸面设置中,它也被指出是不同的。许多尝试,例如降低自适应学习率,采用较大的批量大小,结合了时间去相关技术,寻求类似的替代物,\ textit {etc。},以促进Adam-type算法融合。与现有方法相反,我们引入了另一种易于检查的替代条件,这仅取决于基础学习率的参数和历史二阶时刻的组合,以确保通用ADAM的全球融合以解决大型融合。缩放非凸随机优化。这种观察结果以及这种足够的条件,对亚当的差异产生了更深刻的解释。另一方面,在实践中,无需任何理论保证,广泛使用了迷你ADAM和分布式ADAM。我们进一步分析了分布式系统中的批次大小或节点的数量如何影响亚当的收敛性,从理论上讲,这表明迷你批次和分布式亚当可以通过使用较大的迷你批量或较大的大小来线性地加速节点的数量。最后,我们应用了通用的Adam和Mini Batch Adam,具有足够条件来求解反例并在各种真实世界数据集上训练多个神经网络。实验结果完全符合我们的理论分析。
translated by 谷歌翻译
最近,随机梯度下降(SGD)及其变体已成为机器学习(ML)问题大规模优化的主要方法。已经提出了各种策略来调整步骤尺寸,从自适应步骤大小到启发式方法,以更改每次迭代中的步骤大小。此外,动力已被广泛用于ML任务以加速训练过程。然而,我们对它们的理论理解存在差距。在这项工作中,我们开始通过为一些启发式优化方法提供正式保证并提出改进的算法来缩小这一差距。首先,我们分析了凸面和非凸口设置的Adagrad(延迟Adagrad)步骤大小的广义版本,这表明这些步骤尺寸允许算法自动适应随机梯度的噪声水平。我们首次显示延迟Adagrad的足够条件,以确保梯度几乎融合到零。此外,我们对延迟的Adagrad及其在非凸面设置中的动量变体进行了高概率分析。其次,我们用指数级和余弦的步骤分析了SGD,在经验上取得了成功,但缺乏理论支持。我们在平滑和非凸的设置中为它们提供了最初的收敛保证,有或没有polyak-{\ l} ojasiewicz(pl)条件。我们还显示了它们在PL条件下适应噪声的良好特性。第三,我们研究动量方法的最后迭代。我们证明了SGD的最后一个迭代的凸设置中的第一个下限,并以恒定的动量。此外,我们研究了一类跟随基于领先的领导者的动量算法,并随着动量和收缩的更新而增加。我们表明,他们的最后一个迭代具有最佳的收敛性,用于无约束的凸随机优化问题。
translated by 谷歌翻译
自Reddi等人以来。 2018年指出了亚当的分歧问题,已经设计了许多新变体以获得融合。但是,香草·亚当(Vanilla Adam)仍然非常受欢迎,并且在实践中效果很好。为什么理论和实践之间存在差距?我们指出,理论和实践的设置之间存在不匹配:Reddi等。 2018年选择亚当的超参数后选择问题,即$(\ beta_1,\ beta_2)$;虽然实际应用通常首先解决问题,然后调整$(\ beta_1,\ beta_2)$。由于这一观察,我们猜想只有当我们改变选择问题和超参数的顺序时,理论上的经验收敛才能是合理的。在这项工作中,我们确认了这一猜想。我们证明,当$ \ beta_2 $很大时,$ \ beta_1 <\ sqrt {\ beta_2} <1 $,Adam收集到关键点附近。邻居的大小是随机梯度方差的命题。在额外的条件(强烈生长条件)下,亚当收敛到关键点。随着$ \ beta_2 $的增加,我们的收敛结果可以覆盖[0,1)$中的任何$ \ beta_1 \,包括$ \ beta_1 = 0.9 $,这是深度学习库中的默认设置。我们的结果表明,亚当可以在广泛的超参数下收敛,而无需对其更新规则进行任何修改。据我们所知,我们是第一个证明这一结果的人,而没有强有力的假设,例如有限梯度。当$ \ beta_2 $很小时,我们进一步指出了一个$(\ beta_1,\ beta_2)$的大区域,亚当可以在其中偏离无限。我们的差异结果考虑与我们的收敛结果相同的设置,表明在增加$ \ beta_2 $时从差异到收敛的相变。这些正面和负面的结果可以提供有关如何调整亚当超级参数的建议。
translated by 谷歌翻译
Mini-batch stochastic gradient descent (SGD) is state of the art in large scale distributed training. The scheme can reach a linear speedup with respect to the number of workers, but this is rarely seen in practice as the scheme often suffers from large network delays and bandwidth limits. To overcome this communication bottleneck recent works propose to reduce the communication frequency. An algorithm of this type is local SGD that runs SGD independently in parallel on different workers and averages the sequences only once in a while. This scheme shows promising results in practice, but eluded thorough theoretical analysis.We prove concise convergence rates for local SGD on convex problems and show that it converges at the same rate as mini-batch SGD in terms of number of evaluated gradients, that is, the scheme achieves linear speedup in the number of workers and mini-batch size. The number of communication rounds can be reduced up to a factor of T 1/2 -where T denotes the number of total steps-compared to mini-batch SGD. This also holds for asynchronous implementations.Local SGD can also be used for large scale training of deep learning models. The results shown here aim serving as a guideline to further explore the theoretical and practical aspects of local SGD in these applications.
translated by 谷歌翻译
在本文中,我们考虑基于移动普通(SEMA)的广泛使用但不完全了解随机估计器,其仅需要{\ bf是一般无偏的随机oracle}。我们展示了Sema在一系列随机非凸优化问题上的力量。特别是,我们分析了基于SEMA的SEMA的{\ BF差异递归性能的各种随机方法(现有或新提出),即三个非凸优化,即标准随机非凸起最小化,随机非凸强烈凹入最小最大优化,随机均方优化。我们的贡献包括:(i)对于标准随机非凸起最小化,我们向亚当风格方法(包括ADAM,AMSGRAD,Adabound等)提供了一个简单而直观的融合证明,随着越来越大的“势头” “一阶时刻的参数,它给出了一种替代但更自然的方式来保证亚当融合; (ii)对于随机非凸强度凹入的最小值优化,我们介绍了一种基于移动平均估计器的单环原始 - 双随机动量和自适应方法,并确定其Oracle复杂性$ O(1 / \ epsilon ^ 4)$不使用大型批量大小,解决文献中的差距; (iii)对于随机双脚优化,我们介绍了一种基于移动平均估计器的单环随机方法,并确定其Oracle复杂性$ \ widetilde o(1 / \ epsilon ^ 4)$,而无需计算Hessian矩阵的SVD,改善最先进的结果。对于所有这些问题,我们还建立了使用随机梯度估计器的差异递减结果。
translated by 谷歌翻译
Training large neural networks requires distributing learning across multiple workers, where the cost of communicating gradients can be a significant bottleneck. SIGNSGD alleviates this problem by transmitting just the sign of each minibatch stochastic gradient. We prove that it can get the best of both worlds: compressed gradients and SGD-level convergence rate. The relative 1 / 2 geometry of gradients, noise and curvature informs whether SIGNSGD or SGD is theoretically better suited to a particular problem. On the practical side we find that the momentum counterpart of SIGNSGD is able to match the accuracy and convergence speed of ADAM on deep Imagenet models. We extend our theory to the distributed setting, where the parameter server uses majority vote to aggregate gradient signs from each worker enabling 1-bit compression of worker-server communication in both directions. Using a theorem by Gauss (1823) we prove that majority vote can achieve the same reduction in variance as full precision distributed SGD. Thus, there is great promise for sign-based optimisation schemes to achieve fast communication and fast convergence. Code to reproduce experiments is to be found at https://github.com/jxbz/signSGD.
translated by 谷歌翻译
我们考虑了分布式随机优化问题,其中$ n $代理想要最大程度地减少代理本地函数总和给出的全局函数,并专注于当代理的局部函数在非i.i.i.d上定义时,专注于异质设置。数据集。我们研究本地SGD方法,在该方法中,代理执行许多局部随机梯度步骤,并偶尔与中央节点进行通信以改善其本地优化任务。我们分析了本地步骤对局部SGD的收敛速率和通信复杂性的影响。特别是,我们允许在$ i $ th的通信回合($ h_i $)期间允许在所有通信回合中进行固定数量的本地步骤。我们的主要贡献是将本地SGD的收敛速率表征为$ \ {h_i \} _ {i = 1}^r $在强烈凸,convex和nonconvex local函数下的函数,其中$ r $是沟通总数。基于此特征,我们在序列$ \ {h_i \} _ {i = 1}^r $上提供足够的条件,使得本地SGD可以相对于工人数量实现线性加速。此外,我们提出了一种新的沟通策略,将本地步骤提高,优于现有的沟通策略,以突出局部功能。另一方面,对于凸和非凸局局功能,我们认为固定的本地步骤是本地SGD的最佳通信策略,并恢复了最新的收敛速率结果。最后,我们通过广泛的数值实验证明我们的理论结果是合理的。
translated by 谷歌翻译
In distributed training of deep neural networks, parallel minibatch SGD is widely used to speed up the training process by using multiple workers. It uses multiple workers to sample local stochastic gradient in parallel, aggregates all gradients in a single server to obtain the average, and update each worker's local model using a SGD update with the averaged gradient. Ideally, parallel mini-batch SGD can achieve a linear speed-up of the training time (with respect to the number of workers) compared with SGD over a single worker. However, such linear scalability in practice is significantly limited by the growing demand for gradient communication as more workers are involved. Model averaging, which periodically averages individual models trained over parallel workers, is another common practice used for distributed training of deep neural networks since (Zinkevich et al. 2010) (McDonald, Hall, andMann 2010). Compared with parallel mini-batch SGD, the communication overhead of model averaging is significantly reduced. Impressively, tremendous experimental works have verified that model averaging can still achieve a good speed-up of the training time as long as the averaging interval is carefully controlled. However, it remains a mystery in theory why such a simple heuristic works so well. This paper provides a thorough and rigorous theoretical study on why model averaging can work as well as parallel mini-batch SGD with significantly less communication overhead.
translated by 谷歌翻译
尽管他们的超大容量过度装备能力,但是由特定优化算法训练的深度神经网络倾向于概括到看不见的数据。最近,研究人员通过研究优化算法的隐式正则化效果来解释它。卓越的进展是工作(Lyu&Li,2019),其证明了梯度下降(GD)最大化了均匀深神经网络的余量。除GD外,诸如Adagrad,RMSProp和Adam之类的自适应算法由于其快速培训过程而流行。然而,仍然缺乏适应性优化算法的概括的理论保证。在本文中,我们研究了自适应优化算法的隐式正则化,当它们在均匀深神经网络上优化逻辑损失时。我们证明了在调节器(如亚当和RMSProp)中采用指数移动平均策略的自适应算法可以最大化神经网络的余量,而Adagrad直接在调节器中总和历史平方梯度。它表明了调节剂设计中指数移动平均策略的概括的优越性。从技术上讲,我们提供统一的框架,通过构建新的自适应梯度流量和代理余量来分析自适应优化算法的会聚方向。我们的实验可以很好地支持适应性优化算法的会聚方向的理论发现。
translated by 谷歌翻译
自适应梯度方法对解决许多机器学习问题的性能具有出色的性能。尽管最近研究了多种自适应方法,它们主要专注于经验或理论方面,并且还通过使用一些特定的自适应学习率来解决特定问题。希望为解决一般问题的理论保证来设计一种普遍的自适应梯度算法框架。为了填补这一差距,我们通过引入包括大多数现有自适应梯度形式的通用自适应矩阵提出了一种更快和普遍的自适应梯度框架(即,Super-Adam)。此外,我们的框架可以灵活地集成了减少技术的势头和方差。特别是,我们的小说框架为非透露设置下的自适应梯度方法提供了收敛分析支持。在理论分析中,我们证明我们的超亚当算法可以实现$ \ tilde {o}(\ epsilon ^ { - 3})$的最着名的复杂性,用于查找$ \ epsilon $ -stationary points的非核心优化,这匹配随机平滑非渗透优化的下限。在数值实验中,我们采用各种深度学习任务来验证我们的算法始终如一地优于现有的自适应算法。代码可在https://github.com/lijunyi95/superadam获得
translated by 谷歌翻译
Nonconvex optimization is central in solving many machine learning problems, in which block-wise structure is commonly encountered. In this work, we propose cyclic block coordinate methods for nonconvex optimization problems with non-asymptotic gradient norm guarantees. Our convergence analysis is based on a gradient Lipschitz condition with respect to a Mahalanobis norm, inspired by a recent progress on cyclic block coordinate methods. In deterministic settings, our convergence guarantee matches the guarantee of (full-gradient) gradient descent, but with the gradient Lipschitz constant being defined w.r.t.~the Mahalanobis norm. In stochastic settings, we use recursive variance reduction to decrease the per-iteration cost and match the arithmetic operation complexity of current optimal stochastic full-gradient methods, with a unified analysis for both finite-sum and infinite-sum cases. We further prove the faster, linear convergence of our methods when a Polyak-{\L}ojasiewicz (P{\L}) condition holds for the objective function. To the best of our knowledge, our work is the first to provide variance-reduced convergence guarantees for a cyclic block coordinate method. Our experimental results demonstrate the efficacy of the proposed variance-reduced cyclic scheme in training deep neural nets.
translated by 谷歌翻译
We study stochastic monotone inclusion problems, which widely appear in machine learning applications, including robust regression and adversarial learning. We propose novel variants of stochastic Halpern iteration with recursive variance reduction. In the cocoercive -- and more generally Lipschitz-monotone -- setup, our algorithm attains $\epsilon$ norm of the operator with $\mathcal{O}(\frac{1}{\epsilon^3})$ stochastic operator evaluations, which significantly improves over state of the art $\mathcal{O}(\frac{1}{\epsilon^4})$ stochastic operator evaluations required for existing monotone inclusion solvers applied to the same problem classes. We further show how to couple one of the proposed variants of stochastic Halpern iteration with a scheduled restart scheme to solve stochastic monotone inclusion problems with ${\mathcal{O}}(\frac{\log(1/\epsilon)}{\epsilon^2})$ stochastic operator evaluations under additional sharpness or strong monotonicity assumptions.
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
非凸优化的传统分析通常取决于平滑度的假设,即要求梯度为Lipschitz。但是,最近的证据表明,这种平滑度条件并未捕获一些深度学习目标功能的特性,包括涉及复发性神经网络和LSTM的函数。取而代之的是,他们满足了更轻松的状况,并具有潜在的无界光滑度。在这个轻松的假设下,从理论和经验上表明,倾斜的SGD比香草具有优势。在本文中,我们表明,在解决此类情况时,剪辑对于ADAM型算法是不可或缺的:从理论上讲,我们证明了广义标志GD算法可以获得与带有剪辑的SGD相似的收敛速率,但根本不需要显式剪辑。一端的这个算法家族恢复了符号,另一端与受欢迎的亚当算法非常相似。我们的分析强调了动量在分析符号类型和ADAM型算法中发挥作用的关键作用:它不仅降低了噪声的影响,因此在先前的符号分析中消除了大型迷你批次的需求显着降低了无界平滑度和梯度规范的影响。我们还将这些算法与流行的优化器进行了比较,在一组深度学习任务上,观察到我们可以在击败其他人的同时匹配亚当的性能。
translated by 谷歌翻译
随机多变最小化 - 最小化(SMM)是大多数变化最小化的经典原则的在线延伸,这包括采样I.I.D。来自固定数据分布的数据点,并最小化递归定义的主函数的主要替代。在本文中,我们引入了随机块大大化 - 最小化,其中替代品现在只能块多凸,在半径递减内的时间优化单个块。在SMM中的代理人放松标准的强大凸起要求,我们的框架在内提供了更广泛的适用性,包括在线CANDECOMP / PARAFAC(CP)字典学习,并且尤其是当问题尺寸大时产生更大的计算效率。我们对所提出的算法提供广泛的收敛性分析,我们在可能的数据流下派生,放松标准i.i.d。对数据样本的假设。我们表明,所提出的算法几乎肯定会收敛于速率$ O((\ log n)^ {1+ \ eps} / n ^ {1/2})$的约束下的非凸起物镜的静止点集合。实证丢失函数和$ O((\ log n)^ {1+ \ eps} / n ^ {1/4})$的预期丢失函数,其中$ n $表示处理的数据样本数。在一些额外的假设下,后一趋同率可以提高到$ o((\ log n)^ {1+ \ eps} / n ^ {1/2})$。我们的结果为一般马尔维亚数据设置提供了各种在线矩阵和张量分解算法的第一融合率界限。
translated by 谷歌翻译
Federated Learning是一种机器学习培训范式,它使客户能够共同培训模型而无需共享自己的本地化数据。但是,实践中联合学习的实施仍然面临许多挑战,例如由于重复的服务器 - 客户同步以及基于SGD的模型更新缺乏适应性,大型通信开销。尽管已经提出了各种方法来通过梯度压缩或量化来降低通信成本,并且提出了联合版本的自适应优化器(例如FedAdam)来增加适应性,目前的联合学习框架仍然无法立即解决上述挑战。在本文中,我们提出了一种具有理论融合保证的新型沟通自适应联合学习方法(FedCAMS)。我们表明,在非convex随机优化设置中,我们提出的fedcams的收敛率与$ o(\ frac {1} {\ sqrt {tkm}})$与其非压缩的对应物相同。各种基准的广泛实验验证了我们的理论分析。
translated by 谷歌翻译
为了提高分布式学习的训练速度,近年来见证了人们对开发同步和异步分布式随机方差减少优化方法的极大兴趣。但是,所有现有的同步和异步分布式训练算法都遭受了收敛速度或实施复杂性的各种局限性。这激发了我们提出一种称为\ algname(\ ul {s} emi-as \ ul {yn}的算法} ent \ ul {s} earch),它利用方差减少框架的特殊结构来克服同步和异步分布式学习算法的局限性,同时保留其显着特征。我们考虑分布式和共享内存体系结构下的\ algname的两个实现。我们表明我们的\ algname算法具有\(o(\ sqrt {n} \ epsilon^{ - 2}( - 2}(\ delta+1)+n)\)\)和\(o(\ sqrt {n} {n} 2}(\ delta+1)d+n)\)用于实现\(\ epsilon \)的计算复杂性 - 分布式和共享内存体系结构分别在非convex学习中的固定点,其中\(n \)表示培训样本的总数和\(\ delta \)表示工人的最大延迟。此外,我们通过建立二次强烈凸和非convex优化的算法稳定性界限来研究\ algname的概括性能。我们进一步进行广泛的数值实验来验证我们的理论发现
translated by 谷歌翻译
由于培训数据集的大小爆炸,分布式学习近年来受到了日益增长的兴趣。其中一个主要瓶颈是中央服务器和本地工人之间的沟通成本。虽然已经证明错误反馈压缩以通过随机梯度下降(SGD)降低通信成本,但在培训大规模机器学习方面广泛用于培训的通信有效的适应性梯度方法楷模。在本文中,我们提出了一种新的通信 - 压缩AMSGRAD,用于分布式非透明的优化问题,可提供有效的效率。我们所提出的分布式学习框架具有有效的渐变压缩策略和工人侧模型更新设计。我们证明所提出的通信有效的分布式自适应梯度方法会聚到具有与随机非凸化优化设置中的未压缩的vanilla amsgrad相同的迭代复杂度的一阶静止点。关于各种基准备份我们理论的实验。
translated by 谷歌翻译
我们的目标是使随机梯度$ \ sigma^2 $在随机梯度和(ii)问题依赖性常数中自适应(i)自适应。当最大程度地减少条件编号$ \ kappa $的平滑,强大的功能时,我们证明,$ t $ t $ toerations sgd的$ t $ toerations sgd具有指数降低的阶跃尺寸和对平滑度的知识可以实现$ \ tilde {o} \ left(\ exp) \ left(\ frac {-t} {\ kappa} \ right) + \ frac {\ sigma^2} {t} \ right)$ rate,而又不知道$ \ sigma^2 $。为了适应平滑度,我们使用随机线路搜索(SLS)并显示(通过上下距离),其SGD的SGD与SLS以所需的速率收敛,但仅针对溶液的邻域。另一方面,我们证明具有平滑度的离线估计值的SGD会收敛到最小化器。但是,其速率与估计误差成正比的速度减慢。接下来,我们证明具有Nesterov加速度和指数步骤尺寸(称为ASGD)的SGD可以实现接近最佳的$ \ tilde {o} \ left(\ exp \ left(\ frac {-t} {-t} {\ sqrt {\ sqrt {\ sqrt { \ kappa}}} \ right) + \ frac {\ sigma^2} {t} \ right)$ rate,而无需$ \ sigma^2 $。当与平滑度和强频率的离线估计值一起使用时,ASGD仍会收敛到溶液,尽管速度较慢。我们从经验上证明了指数级尺寸的有效性以及新型SLS的变体。
translated by 谷歌翻译
我们开发了一种新方法来解决中央服务器中分布式学习问题中的通信约束。我们提出和分析了一种执行双向压缩的新算法,并仅使用uplink(从本地工人到中央服务器)压缩达到与算法相同的收敛速率。为了获得此改进,我们设计了MCM,一种算法,使下行链路压缩仅影响本地模型,而整体模型则保留。结果,与以前的工作相反,本地服务器上的梯度是在干扰模型上计算的。因此,融合证明更具挑战性,需要精确控制这种扰动。为了确保它,MCM还将模型压缩与存储机制相结合。该分析打开了新的门,例如纳入依赖工人的随机模型和部分参与。
translated by 谷歌翻译