在本文中,我们考虑基于移动普通(SEMA)的广泛使用但不完全了解随机估计器,其仅需要{\ bf是一般无偏的随机oracle}。我们展示了Sema在一系列随机非凸优化问题上的力量。特别是,我们分析了基于SEMA的SEMA的{\ BF差异递归性能的各种随机方法(现有或新提出),即三个非凸优化,即标准随机非凸起最小化,随机非凸强烈凹入最小最大优化,随机均方优化。我们的贡献包括:(i)对于标准随机非凸起最小化,我们向亚当风格方法(包括ADAM,AMSGRAD,Adabound等)提供了一个简单而直观的融合证明,随着越来越大的“势头” “一阶时刻的参数,它给出了一种替代但更自然的方式来保证亚当融合; (ii)对于随机非凸强度凹入的最小值优化,我们介绍了一种基于移动平均估计器的单环原始 - 双随机动量和自适应方法,并确定其Oracle复杂性$ O(1 / \ epsilon ^ 4)$不使用大型批量大小,解决文献中的差距; (iii)对于随机双脚优化,我们介绍了一种基于移动平均估计器的单环随机方法,并确定其Oracle复杂性$ \ widetilde o(1 / \ epsilon ^ 4)$,而无需计算Hessian矩阵的SVD,改善最先进的结果。对于所有这些问题,我们还建立了使用随机梯度估计器的差异递减结果。
translated by 谷歌翻译
自2014年发明以来,亚当优化器得到了巨大的关注。一方面,它已被广泛用于深度学习,并且已经提出了许多变体,而另一方面,他们的理论会聚属性仍然是一个谜。在某种意义上,某些研究需要对更新的强烈假设不一定适用,而其他研究仍然遵循ADAM的原始问题收敛分析,这是令人满意的,而其他研究仍然是确保收敛的原始问题收敛分析。虽然ADAM存在严格的收敛分析,但它们对自适应步长的更新施加了特定的要求,这不足以覆盖亚当的许多其他变体。为了解决这些问题,在这个扩展的摘要中,我们为ADAM样式方法(包括亚当,AMSGRAD,Adabound等)提供了一个简单而通用的融合证明。我们的分析只需要一个增加或大的“动量”参数,用于一阶时刻,这实际上是在实践中使用的情况,以及对阶梯尺寸的自适应因子的界限条件,其适用于在温和下的亚当的所有变体随机梯度的条件。我们还建立了使用随机梯度估计器的差异递减结果。实际上,我们对亚当的分析如此简单,通用,可以利用来建立求解更广泛的非凸优化问题的收敛性,包括最小,组成和彼得优化问题。对于此扩展摘要的完整(早期)版本,请参阅ARXIV:2104.14840。
translated by 谷歌翻译
本文重点介绍了解决光滑非凸强凹入最小问题的随机方法,这导致了由于其深度学习中的潜在应用而受到越来越长的关注(例如,深度AUC最大化,分布鲁棒优化)。然而,大多数现有算法在实践中都很慢,并且它们的分析围绕到几乎静止点的收敛。我们考虑利用Polyak-\ L Ojasiewicz(PL)条件来设计更快的随机算法,具有更强的收敛保证。尽管已经用于设计许多随机最小化算法的PL条件,但它们对非凸敏最大优化的应用仍然罕见。在本文中,我们提出并分析了基于近端的跨越时代的方法的通用框架,许多众所周知的随机更新嵌入。以{\ BF原始物镜差和二元间隙}的方式建立快速收敛。与现有研究相比,(i)我们的分析基于一个新的Lyapunov函数,包括原始物理差距和正则化功能的二元间隙,(ii)结果更加全面,提高了更好的依赖性的速率不同假设下的条件号。我们还开展深层和非深度学习实验,以验证我们的方法的有效性。
translated by 谷歌翻译
梯度下降上升(GDA),最简单的单环路算法用于非凸起最小化优化,广泛用于实际应用,例如生成的对抗网络(GANS)和对抗性训练。尽管其理想的简单性,最近的工作表明了理论上的GDA的较差收敛率,即使在一侧对象的强凹面也是如此。本文为两个替代的单环算法建立了新的收敛结果 - 交替GDA和平滑GDA - 在温和的假设下,目标对一个变量的polyak-lojasiewicz(pl)条件满足Polyak-lojasiewicz(pl)条件。我们证明,找到一个$ \ epsilon $ -stationary点,(i)交替的GDA及其随机变体(没有迷你批量),分别需要$ o(\ kappa ^ {2} \ epsilon ^ { - 2})$和$ o(\ kappa ^ {4} \ epsilon ^ {-4})$迭代,而(ii)平滑gda及其随机变体(没有迷你批次)分别需要$ o(\ kappa \ epsilon ^ { - 2}) $和$ o(\ kappa ^ {2} \ epsilon ^ { - 4})$迭代。后者大大改善了Vanilla GDA,并在类似的环境下给出了单环算法之间的最佳已知复杂性结果。我们进一步展示了这些算法在训练GAN和强大的非线性回归中的经验效率。
translated by 谷歌翻译
在本文中,我们研究了多块最小双重双层优化问题,其中上层是非凸线的最小值最小值目标,而下层级别是一个强烈的凸目标,并且有多个双重变量块和下层级别。问题。由于交织在一起的多块最小双重双重结构,每次迭代处的计算成本可能高高,尤其是在大量块中。为了应对这一挑战,我们提出了一种单循环随机随机算法,该算法需要在每次迭代时仅恒定数量的块进行更新。在对问题的一些温和假设下,我们建立了$ \ Mathcal {o}(1/\ Epsilon^4)$的样本复杂性,用于查找$ \ epsilon $ - 稳定点。这匹配了在一般无偏见的随机甲骨文模型下求解随机非convex优化的最佳复杂性。此外,我们在多任务深度AUC(ROC曲线下)最大化和多任务深度部分AUC最大化中提供了两种应用。实验结果验证了我们的理论,并证明了我们方法对数百个任务问题的有效性。
translated by 谷歌翻译
最近,随机梯度下降(SGD)及其变体已成为机器学习(ML)问题大规模优化的主要方法。已经提出了各种策略来调整步骤尺寸,从自适应步骤大小到启发式方法,以更改每次迭代中的步骤大小。此外,动力已被广泛用于ML任务以加速训练过程。然而,我们对它们的理论理解存在差距。在这项工作中,我们开始通过为一些启发式优化方法提供正式保证并提出改进的算法来缩小这一差距。首先,我们分析了凸面和非凸口设置的Adagrad(延迟Adagrad)步骤大小的广义版本,这表明这些步骤尺寸允许算法自动适应随机梯度的噪声水平。我们首次显示延迟Adagrad的足够条件,以确保梯度几乎融合到零。此外,我们对延迟的Adagrad及其在非凸面设置中的动量变体进行了高概率分析。其次,我们用指数级和余弦的步骤分析了SGD,在经验上取得了成功,但缺乏理论支持。我们在平滑和非凸的设置中为它们提供了最初的收敛保证,有或没有polyak-{\ l} ojasiewicz(pl)条件。我们还显示了它们在PL条件下适应噪声的良好特性。第三,我们研究动量方法的最后迭代。我们证明了SGD的最后一个迭代的凸设置中的第一个下限,并以恒定的动量。此外,我们研究了一类跟随基于领先的领导者的动量算法,并随着动量和收缩的更新而增加。我们表明,他们的最后一个迭代具有最佳的收敛性,用于无约束的凸随机优化问题。
translated by 谷歌翻译
We study stochastic monotone inclusion problems, which widely appear in machine learning applications, including robust regression and adversarial learning. We propose novel variants of stochastic Halpern iteration with recursive variance reduction. In the cocoercive -- and more generally Lipschitz-monotone -- setup, our algorithm attains $\epsilon$ norm of the operator with $\mathcal{O}(\frac{1}{\epsilon^3})$ stochastic operator evaluations, which significantly improves over state of the art $\mathcal{O}(\frac{1}{\epsilon^4})$ stochastic operator evaluations required for existing monotone inclusion solvers applied to the same problem classes. We further show how to couple one of the proposed variants of stochastic Halpern iteration with a scheduled restart scheme to solve stochastic monotone inclusion problems with ${\mathcal{O}}(\frac{\log(1/\epsilon)}{\epsilon^2})$ stochastic operator evaluations under additional sharpness or strong monotonicity assumptions.
translated by 谷歌翻译
本文分析了双模的彼此优化随机算法框架。 Bilevel优化是一类表现出两级结构的问题,其目标是使具有变量的外目标函数最小化,该变量被限制为对(内部)优化问题的最佳解决方案。我们考虑内部问题的情况是不受约束的并且强烈凸起的情况,而外部问题受到约束并具有平滑的目标函数。我们提出了一种用于解决如此偏纤维问题的两次时间尺度随机近似(TTSA)算法。在算法中,使用较大步长的随机梯度更新用于内部问题,而具有较小步长的投影随机梯度更新用于外部问题。我们在各种设置下分析了TTSA算法的收敛速率:当外部问题强烈凸起(RESP。〜弱凸)时,TTSA算法查找$ \ MATHCAL {O}(k ^ { - 2/3})$ -Optimal(resp。〜$ \ mathcal {o}(k ^ {-2/5})$ - 静止)解决方案,其中$ k $是总迭代号。作为一个应用程序,我们表明,两个时间尺度的自然演员 - 批评批评近端策略优化算法可以被视为我们的TTSA框架的特殊情况。重要的是,与全球最优政策相比,自然演员批评算法显示以预期折扣奖励的差距,以$ \ mathcal {o}(k ^ { - 1/4})的速率收敛。
translated by 谷歌翻译
具有多个耦合序列的随机近似(SA)在机器学习中发现了广泛的应用,例如双光线学习和增强学习(RL)。在本文中,我们研究了具有多个耦合序列的非线性SA的有限时间收敛。与现有的多时间分析不同,我们寻求方案,在这些方案中,细粒度分析可以为多序列单次尺度SA(STSA)提供严格的性能保证。我们分析的核心是在许多应用中具有多序列SA中固定点的平滑度。当所有序列都具有强烈的单调增量时,我们就建立了$ \ Mathcal {o}(\ epsilon^{ - 1})$的迭代复杂性,以实现$ \ epsilon $ -Accuracy,从而改善了现有的$ \ Mathcal {O} {O}(O}(O})(O}(O}(O})) \ epsilon^{ - 1.5})$对于两个耦合序列的复杂性。当除了主序列外具有强烈单调增量时,我们建立了$ \ Mathcal {o}(\ epsilon^{ - 2})$的迭代复杂性。我们的结果的优点在于,将它们应用于随机的二聚体和组成优化问题,以及RL问题会导致对其现有性能保证的放松假设或改进。
translated by 谷歌翻译
在本文中,我们提出了一种实用的在线方法,用于解决具有非凸面目标的一类分布稳健优化(DRO),这在机器学习中具有重要应用,以改善神经网络的稳健性。在文献中,大多数用于解决DRO的方法都基于随机原始方法。然而,DRO的原始方法患有几个缺点:(1)操纵对应于数据尺寸的高维双变量是昂贵的; (2)他们对网上学习不友好,其中数据顺序地发表。为了解决这些问题,我们考虑一类具有KL发散正则化的Dual变量的DRO,将MIN-MAX问题转换为组成最小化问题,并提出了无需较大的批量批量的无需线在线随机方法。我们建立了所提出的方法的最先进的复杂性,而无需多达\ L Ojasiewicz(PL)条件。大规模深度学习任务(i)的实证研究表明,我们的方法可以将培训加速超过2次,而不是基线方法,并在带有$ \ SIM $ 265K图像的大型数据集上节省培训时间。 (ii)验证DRO对实证数据集上的经验风险最小化(ERM)的最高表现。独立兴趣,所提出的方法也可用于解决与最先进的复杂性的随机成分问题家族。
translated by 谷歌翻译
我们分析了一类养生问题,其中高级问题在于平滑的目标函数的最小化和下层问题是找到平滑收缩图的固定点。这种类型的问题包括元学习,平衡模型,超参数优化和数据中毒对抗性攻击的实例。最近的几项作品提出了算法,这些算法温暖了较低级别的问题,即他们使用先前的下级近似解决方案作为低级求解器的凝视点。这种温暖的启动程序使人们可以在随机和确定性设置中提高样品复杂性,在某些情况下可以实现订单的最佳样品复杂性。但是,存在一些情况,例如元学习和平衡模型,其中温暖的启动程序不适合或无效。在这项工作中,我们表明没有温暖的启动,仍然可以实现订单的最佳或近乎最佳的样品复杂性。特别是,我们提出了一种简单的方法,该方法在下层下使用随机固定点迭代,并在上层处预测不精确的梯度下降,该梯度下降到达$ \ epsilon $ -Stationary Point,使用$ O(\ Epsilon^{-2) })$和$ \ tilde {o}(\ epsilon^{ - 1})$样本分别用于随机和确定性设置。最后,与使用温暖启动的方法相比,我们的方法产生了更简单的分析,不需要研究上层和下层迭代之间的耦合相互作用
translated by 谷歌翻译
在论文中,我们提出了一类加速的零顺序,用于非凸迷你优化和最小值优化的一类加速的零序命令和一流的动量方法。具体而言,我们提出了一种新的加速零级动量(ACC-ZOM)方法,用于黑箱迷你优化。此外,我们证明我们的ACC-ZOM方法达到$ \ TILDE {O}的较低查询复杂性(D ^ {3/4} \ epsilon ^ {-3})$寻找$ \ epsilon $ -stationary point,这通过$ o(d ^ {1/4})$ of the $ d $表示可变尺寸。特别是,ACC-ZOM不需要现有的零点随机算法中所需的大批次。同时,我们提出了一种加速\ TextBF {Zeroth-Order} moneotum血管下降(ACC-ZOMDA)方法,用于\ TextBF {Black-Box} Minimax-Optimization,它获得$ \ TINDE {O}的查询复杂性((d_1 + d_2)^ {3/4} \ kappa_y ^ {4.5} \ epsilon ^ { - 3})$没有大批次查找$ \ epsilon $ -stationary point,其中$ d_1 $和$ d_2 $ demote变量尺寸和$ \ kappa_y $是条件号。此外,我们提出了一种加速\ TextBF {一阶}势头血管下降(ACC-MDA)方法,用于\ textBF {White-Box} Minimax优化,它具有$ \ tilde {o}(\ kappa_y ^ { 4.5} \ epsilon ^ { - 3})$无大批次查找$ \ epsilon $ -stationary point。特别是,我们的ACC-MDA可以获得$ \ tilde {o}(\ kappa_y ^ {2.5} \ epsilon ^ {-3})$的较低渐变复杂性,具有批量尺寸$ o(\ kappa_y ^ 4)$。对黑匣子对抗攻击深度神经网络(DNN)和中毒攻击的广泛实验结果表明了我们算法的效率。
translated by 谷歌翻译
标准联合优化方法成功地适用于单层结构的随机问题。然而,许多当代的ML问题 - 包括对抗性鲁棒性,超参数调整和参与者 - 批判性 - 属于嵌套的双层编程,这些编程包含微型型和组成优化。在这项工作中,我们提出了\ fedblo:一种联合交替的随机梯度方法来解决一般的嵌套问题。我们在存在异质数据的情况下为\ fedblo建立了可证明的收敛速率,并引入了二聚体,最小值和组成优化的变化。\ fedblo引入了多种创新,包括联邦高级计算和降低方差,以解决内部级别的异质性。我们通过有关超参数\&超代理学习和最小值优化的实验来补充我们的理论,以证明我们方法在实践中的好处。代码可在https://github.com/ucr-optml/fednest上找到。
translated by 谷歌翻译
我们考虑光滑的凸孔concave双线性耦合的鞍点问题,$ \ min _ {\ mathbf {x}}} \ max _ {\ mathbf {y Mathbf {y}} 〜f(\ mathbf {x}} },\ mathbf {y}) - g(\ mathbf {y})$,其中一个人可以访问$ f $,$ g $的随机一阶oracles以及biinear耦合函数$ h $。基于标准的随机外部分析,我们提出了随机\ emph {加速梯度 - extragradient(ag-eg)}下降的算法,该算法在一般随机设置中结合了外部和Nesterov的加速度。该算法利用计划重新启动以接收一种良好的非震动收敛速率,该算法与\ citet {ibrahim202020linear}和\ citet {zhang2021lower}相匹配,并在其相应的设置中,还有一个额外的统计误差期限,以及\ citet {zhang2021lower}最多达到恒定的预取子。这是在鞍点优化中实现这种相对成熟的最佳表征的第一个结果。
translated by 谷歌翻译
亚当是训练深神经网络的最具影响力的自适应随机算法之一,即使在简单的凸面设置中,它也被指出是不同的。许多尝试,例如降低自适应学习率,采用较大的批量大小,结合了时间去相关技术,寻求类似的替代物,\ textit {etc。},以促进Adam-type算法融合。与现有方法相反,我们引入了另一种易于检查的替代条件,这仅取决于基础学习率的参数和历史二阶时刻的组合,以确保通用ADAM的全球融合以解决大型融合。缩放非凸随机优化。这种观察结果以及这种足够的条件,对亚当的差异产生了更深刻的解释。另一方面,在实践中,无需任何理论保证,广泛使用了迷你ADAM和分布式ADAM。我们进一步分析了分布式系统中的批次大小或节点的数量如何影响亚当的收敛性,从理论上讲,这表明迷你批次和分布式亚当可以通过使用较大的迷你批量或较大的大小来线性地加速节点的数量。最后,我们应用了通用的Adam和Mini Batch Adam,具有足够条件来求解反例并在各种真实世界数据集上训练多个神经网络。实验结果完全符合我们的理论分析。
translated by 谷歌翻译
非滑动非概念优化问题在机器学习和业务决策中广泛出现,而两个核心挑战阻碍了具有有限时间收敛保证的有效解决方案方法的开发:缺乏计算可触及的最佳标准和缺乏计算功能强大的口腔。本文的贡献是两个方面。首先,我们建立了著名的Goldstein Subdferential〜 \ Citep {Goldstein-1977-Optimization}与均匀平滑之间的关系,从而为设计有限时间融合到一组无梯度的方法的基础和直觉提供了基础和直觉戈德斯坦固定点。其次,我们提出了无梯度方法(GFM)和随机GFM,用于解决一类非平滑非凸优化问题,并证明它们两个都可以返回$(\ delta,\ epsilon)$ - Lipschitz函数的Goldstein Sentary Point $ f $以$ o(d^{3/2} \ delta^{ - 1} \ epsilon^{ - 4})$的预期收敛速率为$ o(d^{3/2} \ delta^{ - 1} \ epsilon^{ - 4})$,其中$ d $是问题维度。还提出了两阶段版本的GFM和SGFM,并被证明可以改善大泄漏结果。最后,我们证明了2-SGFM使用\ textsc {minst}数据集对训练Relu神经网络的有效性。
translated by 谷歌翻译
我们改进了用于分析非凸优化随机梯度下降(SGD)的最新工具,以获得香草政策梯度(PG) - 加强和GPOMDP的收敛保证和样本复杂性。我们唯一的假设是预期回报是平滑的w.r.t.策略参数以及其渐变的第二个时刻满足某种\ EMPH {ABC假设}。 ABC的假设允许梯度的第二时刻绑定为\ geq 0 $次的子项优差距,$ b \ geq 0 $乘以完整批量梯度的标准和添加剂常数$ c \ geq 0 $或上述任何组合。我们表明ABC的假设比策略空间上的常用假设更为一般,以证明收敛到静止点。我们在ABC的假设下提供单个融合定理,并表明,尽管ABC假设的一般性,我们恢复了$ \ widetilde {\ mathcal {o}}(\ epsilon ^ {-4})$样本复杂性pg 。我们的融合定理还可在选择超参数等方面提供更大的灵活性,例如步长和批量尺寸的限制$ M $。即使是单个轨迹案例(即,$ M = 1 $)适合我们的分析。我们认为,ABC假设的一般性可以为PG提供理论担保,以至于以前未考虑的更广泛的问题。
translated by 谷歌翻译
Nonconvex-nonconcave minimax optimization has been the focus of intense research over the last decade due to its broad applications in machine learning and operation research. Unfortunately, most existing algorithms cannot be guaranteed to converge and always suffer from limit cycles. Their global convergence relies on certain conditions that are difficult to check, including but not limited to the global Polyak-\L{}ojasiewicz condition, the existence of a solution satisfying the weak Minty variational inequality and $\alpha$-interaction dominant condition. In this paper, we develop the first provably convergent algorithm called doubly smoothed gradient descent ascent method, which gets rid of the limit cycle without requiring any additional conditions. We further show that the algorithm has an iteration complexity of $\mathcal{O}(\epsilon^{-4})$ for finding a game stationary point, which matches the best iteration complexity of single-loop algorithms under nonconcave-concave settings. The algorithm presented here opens up a new path for designing provable algorithms for nonconvex-nonconcave minimax optimization problems.
translated by 谷歌翻译
我们考虑非凸凹minimax问题,$ \ min _ {\ mathbf {x}} \ mathcal {y}} f(\ mathbf {x},\ mathbf {y})$, $ f $在$ \ mathbf {x} $ on $ \ mathbf {y} $和$ \ mathcal {y} $中的$ \ \ mathbf {y} $。解决此问题的最受欢迎的算法之一是庆祝的梯度下降上升(GDA)算法,已广泛用于机器学习,控制理论和经济学。尽管凸凹设置的广泛收敛结果,但具有相等步骤的GDA可以收敛以限制循环甚至在一般设置中发散。在本文中,我们介绍了两次尺度GDA的复杂性结果,以解决非膨胀凹入的最小问题,表明该算法可以找到函数$ \ phi(\ cdot)的静止点:= \ max _ {\ mathbf {Y} \ In \ Mathcal {Y}} F(\ CDOT,\ MATHBF {Y})高效。据我们所知,这是对这一环境中的两次尺度GDA的第一个非因对药分析,阐明了其在培训生成对抗网络(GANS)和其他实际应用中的优越实际表现。
translated by 谷歌翻译
标准梯度下降(GDA) - 型算法只能在非凸极小优化中找到固定点,这比局部minimax点比局部最佳。在这项工作中,我们开发了GDA型算法,这些算法在非convex-rong-concave minimax优化中全球收敛到局部minimax点。我们首先观察到局部最小点等效于某个包膜函数的二阶固定点。然后,受到经典立方正则化算法的启发,我们提出了Cubic-GDA(一种用于查找局部最小值点的立方体规范化的GDA算法),并通过利用其内在潜在功能来提供全面的收敛分析。具体而言,我们以sublinear收敛速率建立了立方GDA与局部最小点的全球收敛。我们进一步分析了在局部梯度显性型非凸几何形状的整个频谱中立方GDA的渐近收敛速率,比标准GDA更快地建立秩序的渐近收敛速率。此外,我们提出了用于大规模最小优化的立方GDA的随机变体,并在随机子采样下表征其样品复杂性。
translated by 谷歌翻译