我们提出了一种使用加权节点的联合学习方法,可以在其中修改权重以在单独的验证集上优化模型的性能。该问题被称为双重优化,其中内部问题是加权节点的联合学习问题,外部问题着重于基于从内部问题返回的模型的验证性能优化权重。沟通效率的联合优化算法旨在解决此双重优化问题。在遇到错误的假设下,我们分析了输出模型的概括性能,并识别我们的方法在理论上优于训练模型,而仅在本地训练和使用静态且均匀分布的权重进行联合学习。
translated by 谷歌翻译
虽然减少方差方法在解决大规模优化问题方面取得了巨大成功,但其中许多人遭受了累积错误,因此应定期需要进行完整的梯度计算。在本文中,我们提出了一种用于有限的和非convex优化的单环算法(梯度估计器的单环方法),该算法不需要定期刷新梯度估计器,但实现了几乎最佳的梯度复杂性。与现有方法不同,雪橇具有多功能性的优势。 (i)二阶最优性,(ii)PL区域中的指数收敛性,以及(iii)在较小的数据异质性下较小的复杂性。我们通过利用这些有利的特性来构建有效的联合学习算法。我们展示了输出的一阶和二阶最优性,并在PL条件下提供分析。当本地预算足够大,并且客户少(Hessian-)〜异质时,该算法需要较少的通信回合,而不是现有方法,例如FedAvg,脚手架和Mime。我们方法的优势在数值实验中得到了验证。
translated by 谷歌翻译
This study investigates clustered federated learning (FL), one of the formulations of FL with non-i.i.d. data, where the devices are partitioned into clusters and each cluster optimally fits its data with a localized model. We propose a novel clustered FL framework, which applies a nonconvex penalty to pairwise differences of parameters. This framework can automatically identify clusters without a priori knowledge of the number of clusters and the set of devices in each cluster. To implement the proposed framework, we develop a novel clustered FL method called FPFC. Advancing from the standard ADMM, our method is implemented in parallel, updates only a subset of devices at each communication round, and allows each participating device to perform a variable amount of work. This greatly reduces the communication cost while simultaneously preserving privacy, making it practical for FL. We also propose a new warmup strategy for hyperparameter tuning under FL settings and consider the asynchronous variant of FPFC (asyncFPFC). Theoretically, we provide convergence guarantees of FPFC for general nonconvex losses and establish the statistical convergence rate under a linear model with squared loss. Our extensive experiments demonstrate the advantages of FPFC over existing methods.
translated by 谷歌翻译
我们展示了一个联合学习框架,旨在强大地提供具有异构数据的各个客户端的良好预测性能。所提出的方法对基于SuperQualile的学习目标铰接,捕获异构客户端的误差分布的尾统计。我们提出了一种随机训练算法,其与联合平均步骤交织差异私人客户重新重量步骤。该提出的算法支持有限时间收敛保证,保证覆盖凸和非凸面设置。关于联邦学习的基准数据集的实验结果表明,我们的方法在平均误差方面与古典误差竞争,并且在误差的尾统计方面优于它们。
translated by 谷歌翻译
Federated learning is a distributed framework according to which a model is trained over a set of devices, while keeping data localized. This framework faces several systemsoriented challenges which include (i) communication bottleneck since a large number of devices upload their local updates to a parameter server, and (ii) scalability as the federated network consists of millions of devices. Due to these systems challenges as well as issues related to statistical heterogeneity of data and privacy concerns, designing a provably efficient federated learning method is of significant importance yet it remains challenging. In this paper, we present FedPAQ, a communication-efficient Federated Learning method with Periodic Averaging and Quantization. FedPAQ relies on three key features: (1) periodic averaging where models are updated locally at devices and only periodically averaged at the server; (2) partial device participation where only a fraction of devices participate in each round of the training; and (3) quantized messagepassing where the edge nodes quantize their updates before uploading to the parameter server. These features address the communications and scalability challenges in federated learning. We also show that FedPAQ achieves near-optimal theoretical guarantees for strongly convex and non-convex loss functions and empirically demonstrate the communication-computation tradeoff provided by our method.
translated by 谷歌翻译
联合学习(FL)旨在最大程度地减少培训模型的沟通复杂性,而不是在许多客户中分发的异质数据。一种常见的方法是本地方法,在与服务器通信之前,客户端在本地数据(例如FedAvg)之前对本地数据进行了多个优化步骤。本地方法可以利用客户数据之间的相似性。但是,在现有的分析中,这是以依赖对通信的数量的依赖为代价的。另一方面,全球方法,客户只是在每个回合中返回梯度向量(例如,SGD) ,以R的速度更快,但即使客户均匀,也无法利用客户之间的相似性。我们提出了FedChain,这是一种算法框架,结合了本地方法和全球方法的优势,以实现R的快速收敛,同时利用客户之间的相似性。使用Fedchain,我们实例化了在一般凸和PL设置中先前已知的速率改进的算法,并且在满足强凸度的问题方面几乎是最佳的(通过我们显示的算法独立的下限)。经验结果支持现有方法的理论增益。
translated by 谷歌翻译
联合学习(FL)是在分布式的数据上进行的有希望的隐私机器学习范式。在FL中,每个用户在本地保存数据。这样可以保护用户隐私,但也使服务器难以验证数据质量,尤其是在正确标记数据的情况下。用损坏的标签培训对联邦学习任务有害;但是,在标签噪声的情况下,很少关注FL。在本文中,我们专注于这个问题,并提出一种基于学习的重新加权方法,以减轻FL中嘈杂标签的效果。更确切地说,我们为每个训练样本调整了一个重量,以使学习模型在验证集上具有最佳的概括性能。更正式的是,该过程可以作为联合双层优化问题进行配合。二重优化问题是一种优化问题,具有两个纠缠问题的级别。非分布的二聚体问题最近通过新的有效算法见证了显着的进展。但是,解决联合学习设置下的二杆优化问题的研究不足。我们确定高级评估中的高沟通成本是主要的瓶颈。因此,我们建议\ textit {comm-fedbio}解决一般联合的双杆优化问题;更具体地说,我们提出了两个沟通效率的子例程,以估计高级别。还提供了所提出算法的收敛分析。最后,我们应用提出的算法来解决嘈杂的标签问题。与各种基线相比,我们的方法在几个现实世界数据集上表现出了出色的性能。
translated by 谷歌翻译
In Federated Learning, we aim to train models across multiple computing units (users), while users can only communicate with a common central server, without exchanging their data samples. This mechanism exploits the computational power of all users and allows users to obtain a richer model as their models are trained over a larger set of data points. However, this scheme only develops a common output for all the users, and, therefore, it does not adapt the model to each user. This is an important missing feature, especially given the heterogeneity of the underlying data distribution for various users. In this paper, we study a personalized variant of the federated learning in which our goal is to find an initial shared model that current or new users can easily adapt to their local dataset by performing one or a few steps of gradient descent with respect to their own data. This approach keeps all the benefits of the federated learning architecture, and, by structure, leads to a more personalized model for each user. We show this problem can be studied within the Model-Agnostic Meta-Learning (MAML) framework. Inspired by this connection, we study a personalized variant of the well-known Federated Averaging algorithm and evaluate its performance in terms of gradient norm for non-convex loss functions. Further, we characterize how this performance is affected by the closeness of underlying distributions of user data, measured in terms of distribution distances such as Total Variation and 1-Wasserstein metric.Recently, the idea of personalization in FL and its connections with MAML has gained a lot of attention. In particular, [32] considers a formulation and algorithm similar to our paper, and elaborates
translated by 谷歌翻译
随机多变最小化 - 最小化(SMM)是大多数变化最小化的经典原则的在线延伸,这包括采样I.I.D。来自固定数据分布的数据点,并最小化递归定义的主函数的主要替代。在本文中,我们引入了随机块大大化 - 最小化,其中替代品现在只能块多凸,在半径递减内的时间优化单个块。在SMM中的代理人放松标准的强大凸起要求,我们的框架在内提供了更广泛的适用性,包括在线CANDECOMP / PARAFAC(CP)字典学习,并且尤其是当问题尺寸大时产生更大的计算效率。我们对所提出的算法提供广泛的收敛性分析,我们在可能的数据流下派生,放松标准i.i.d。对数据样本的假设。我们表明,所提出的算法几乎肯定会收敛于速率$ O((\ log n)^ {1+ \ eps} / n ^ {1/2})$的约束下的非凸起物镜的静止点集合。实证丢失函数和$ O((\ log n)^ {1+ \ eps} / n ^ {1/4})$的预期丢失函数,其中$ n $表示处理的数据样本数。在一些额外的假设下,后一趋同率可以提高到$ o((\ log n)^ {1+ \ eps} / n ^ {1/2})$。我们的结果为一般马尔维亚数据设置提供了各种在线矩阵和张量分解算法的第一融合率界限。
translated by 谷歌翻译
Federated learning (FL) is a decentralized and privacy-preserving machine learning technique in which a group of clients collaborate with a server to learn a global model without sharing clients' data. One challenge associated with FL is statistical diversity among clients, which restricts the global model from delivering good performance on each client's task. To address this, we propose an algorithm for personalized FL (pFedMe) using Moreau envelopes as clients' regularized loss functions, which help decouple personalized model optimization from the global model learning in a bi-level problem stylized for personalized FL. Theoretically, we show that pFedMe's convergence rate is state-of-the-art: achieving quadratic speedup for strongly convex and sublinear speedup of order 2/3 for smooth nonconvex objectives. Experimentally, we verify that pFedMe excels at empirical performance compared with the vanilla FedAvg and Per-FedAvg, a meta-learning based personalized FL algorithm.
translated by 谷歌翻译
FEDPROX算法是一种简单但功能强大的分布式近端优化方法,广泛用于联合学习(FL)而不是异质数据。尽管在实践中看到了它的知名度和杰出的成功,但对FEDPROX的理论理解在很大程度上是不足的:FedProx的吸引人的融合行为迄今在某些非标准和不切实际的地方功能的差异假设下的特征是,结果的优化仅限于优化的限制。问题。为了解决这些缺陷,我们通过算法稳定性的镜头开发了FedProx及其Minibatch随机扩展的新型局部差异不变理论。结果,我们有助于得出对FedProx的几个新的和更深入的见解,以实现联合优化的非凸面,包括:1)收敛确保独立于局部差异类型条件; 2)融合保证非平滑FL问题; 3)关于Minibatch的尺寸和采样设备的数量,线性加速。我们的理论首次揭示了局部差异和平稳性对于FedProx获得有利的复杂性界限并不是必备的。据报道,一系列基准FL数据集的初步实验结果证明了小型匹配以提高FEDPROX的样品效率的好处。
translated by 谷歌翻译
标准联合优化方法成功地适用于单层结构的随机问题。然而,许多当代的ML问题 - 包括对抗性鲁棒性,超参数调整和参与者 - 批判性 - 属于嵌套的双层编程,这些编程包含微型型和组成优化。在这项工作中,我们提出了\ fedblo:一种联合交替的随机梯度方法来解决一般的嵌套问题。我们在存在异质数据的情况下为\ fedblo建立了可证明的收敛速率,并引入了二聚体,最小值和组成优化的变化。\ fedblo引入了多种创新,包括联邦高级计算和降低方差,以解决内部级别的异质性。我们通过有关超参数\&超代理学习和最小值优化的实验来补充我们的理论,以证明我们方法在实践中的好处。代码可在https://github.com/ucr-optml/fednest上找到。
translated by 谷歌翻译
我们考虑了分布式随机优化问题,其中$ n $代理想要最大程度地减少代理本地函数总和给出的全局函数,并专注于当代理的局部函数在非i.i.i.d上定义时,专注于异质设置。数据集。我们研究本地SGD方法,在该方法中,代理执行许多局部随机梯度步骤,并偶尔与中央节点进行通信以改善其本地优化任务。我们分析了本地步骤对局部SGD的收敛速率和通信复杂性的影响。特别是,我们允许在$ i $ th的通信回合($ h_i $)期间允许在所有通信回合中进行固定数量的本地步骤。我们的主要贡献是将本地SGD的收敛速率表征为$ \ {h_i \} _ {i = 1}^r $在强烈凸,convex和nonconvex local函数下的函数,其中$ r $是沟通总数。基于此特征,我们在序列$ \ {h_i \} _ {i = 1}^r $上提供足够的条件,使得本地SGD可以相对于工人数量实现线性加速。此外,我们提出了一种新的沟通策略,将本地步骤提高,优于现有的沟通策略,以突出局部功能。另一方面,对于凸和非凸局局功能,我们认为固定的本地步骤是本地SGD的最佳通信策略,并恢复了最新的收敛速率结果。最后,我们通过广泛的数值实验证明我们的理论结果是合理的。
translated by 谷歌翻译
联合学习(FL)是一种在不获取客户私有数据的情况下培训全球模型的协同机器学习技术。 FL的主要挑战是客户之间的统计多样性,客户设备之间的计算能力有限,以及服务器和客户之间的过度沟通开销。为解决这些挑战,我们提出了一种通过最大化FEDMAC的相关性稀疏个性化联合学习计划。通过将近似的L1-norm和客户端模型与全局模型之间的相关性结合到标准流失函数中,提高了统计分集数据的性能,并且与非稀疏FL相比,网络所需的通信和计算负载减少。收敛分析表明,FEDMAC中的稀疏约束不会影响全球模型的收敛速度,理论结果表明,FEDMAC可以实现良好的稀疏个性化,这比基于L2-NOM的个性化方法更好。实验,我们展示了与最先进的个性化方法相比的这种稀疏个性化建筑的益处(例如,FEDMAC分别达到98.95%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,高精度,FMNIST,CIFAR-100和非IID变体下的合成数据集)。
translated by 谷歌翻译
我们提出了一种在异质环境中联合学习的沟通有效方法。在存在$ k $不同的数据分布的情况下,系统异质性反映了,每个用户仅从$ k $分布中的一个中采样数据。所提出的方法只需要在用户和服务器之间进行一次通信,从而大大降低了通信成本。此外,提出的方法通过在样本量方面实现最佳的于点错误(MSE)率,即在异质环境中提供强大的学习保证相同的数据分布,前提是,每个用户的数据点数量高于我们从系统参数方面明确表征的阈值。值得注意的是,这是可以实现的,而无需任何了解基础分布,甚至不需要任何分布数量$ k $。数值实验说明了我们的发现并强调了所提出的方法的性能。
translated by 谷歌翻译
In large-scale distributed learning, security issues have become increasingly important. Particularly in a decentralized environment, some computing units may behave abnormally, or even exhibit Byzantine failures-arbitrary and potentially adversarial behavior. In this paper, we develop distributed learning algorithms that are provably robust against such failures, with a focus on achieving optimal statistical performance. A main result of this work is a sharp analysis of two robust distributed gradient descent algorithms based on median and trimmed mean operations, respectively. We prove statistical error rates for three kinds of population loss functions: strongly convex, nonstrongly convex, and smooth non-convex. In particular, these algorithms are shown to achieve order-optimal statistical error rates for strongly convex losses. To achieve better communication efficiency, we further propose a median-based distributed algorithm that is provably robust, and uses only one communication round. For strongly convex quadratic loss, we show that this algorithm achieves the same optimal error rate as the robust distributed gradient descent algorithms.
translated by 谷歌翻译
与训练数据中心的训练传统机器学习(ML)模型相反,联合学习(FL)训练ML模型,这些模型在资源受限的异质边缘设备上包含的本地数据集上。现有的FL算法旨在为所有参与的设备学习一个单一的全球模型,这对于所有参与培训的设备可能没有帮助,这是由于整个设备的数据的异质性。最近,Hanzely和Richt \'{A} Rik(2020)提出了一种新的配方,以培训个性化的FL模型,旨在平衡传统的全球模型与本地模型之间的权衡,该模型可以使用其私人数据对单个设备进行培训只要。他们得出了一种称为无环梯度下降(L2GD)的新算法,以解决该算法,并表明该算法会在需要更多个性化的情况下,可以改善沟通复杂性。在本文中,我们为其L2GD算法配备了双向压缩机制,以进一步减少本地设备和服务器之间的通信瓶颈。与FL设置中使用的其他基于压缩的算法不同,我们的压缩L2GD算法在概率通信协议上运行,在概率通信协议中,通信不会按固定的时间表进行。此外,我们的压缩L2GD算法在没有压缩的情况下保持与香草SGD相似的收敛速率。为了验证算法的效率,我们在凸和非凸问题上都进行了多种数值实验,并使用各种压缩技术。
translated by 谷歌翻译
The increasing size of data generated by smartphones and IoT devices motivated the development of Federated Learning (FL), a framework for on-device collaborative training of machine learning models. First efforts in FL focused on learning a single global model with good average performance across clients, but the global model may be arbitrarily bad for a given client, due to the inherent heterogeneity of local data distributions. Federated multi-task learning (MTL) approaches can learn personalized models by formulating an opportune penalized optimization problem. The penalization term can capture complex relations among personalized models, but eschews clear statistical assumptions about local data distributions. In this work, we propose to study federated MTL under the flexible assumption that each local data distribution is a mixture of unknown underlying distributions. This assumption encompasses most of the existing personalized FL approaches and leads to federated EM-like algorithms for both client-server and fully decentralized settings. Moreover, it provides a principled way to serve personalized models to clients not seen at training time. The algorithms' convergence is analyzed through a novel federated surrogate optimization framework, which can be of general interest. Experimental results on FL benchmarks show that our approach provides models with higher accuracy and fairness than state-of-the-art methods.
translated by 谷歌翻译
本文着重于随机鞍点问题的分布式优化。本文的第一部分专门针对平滑(强)(强)(强)凹形鞍点问题以及实现这些结合的近乎最佳算法的平滑(强)凸出的凹点鞍点问题的平滑(强)凸出的(强)凸出的凸出鞍点问题。接下来,我们提出了一种新的联合算法,用于分布式鞍点问题 - 额外的步骤本地SGD。对新方法的理论分析是针对强烈凸出的凹形和非convex-non-concave问题进行的。在本文的实验部分中,我们在实践中显示了方法的有效性。特别是,我们以分布方式训练甘恩。
translated by 谷歌翻译
本文分析了双模的彼此优化随机算法框架。 Bilevel优化是一类表现出两级结构的问题,其目标是使具有变量的外目标函数最小化,该变量被限制为对(内部)优化问题的最佳解决方案。我们考虑内部问题的情况是不受约束的并且强烈凸起的情况,而外部问题受到约束并具有平滑的目标函数。我们提出了一种用于解决如此偏纤维问题的两次时间尺度随机近似(TTSA)算法。在算法中,使用较大步长的随机梯度更新用于内部问题,而具有较小步长的投影随机梯度更新用于外部问题。我们在各种设置下分析了TTSA算法的收敛速率:当外部问题强烈凸起(RESP。〜弱凸)时,TTSA算法查找$ \ MATHCAL {O}(k ^ { - 2/3})$ -Optimal(resp。〜$ \ mathcal {o}(k ^ {-2/5})$ - 静止)解决方案,其中$ k $是总迭代号。作为一个应用程序,我们表明,两个时间尺度的自然演员 - 批评批评近端策略优化算法可以被视为我们的TTSA框架的特殊情况。重要的是,与全球最优政策相比,自然演员批评算法显示以预期折扣奖励的差距,以$ \ mathcal {o}(k ^ { - 1/4})的速率收敛。
translated by 谷歌翻译