建筑物的电力消耗构成了该市能源消耗的主要部分。电力消耗预测可以开发房屋能源管理系统,从而导致未来的可持续性房屋设计和总能源消耗的减少。建筑物中的能源性能受环境温度,湿度和各种电气设备等许多因素的影响。因此,多元预测方法是首选而不是单变量。选择了本田智能家庭数据集,以比较三种方法,以最大程度地减少预测错误,MAE和RMSE:人工神经网络,支持向量回归以及基于模糊规则的基于模糊规则的系统,以通过在多变量数据集上为每种方法构造许多模型在不同的时间范围内。比较表明,SVR比替代方案是一种优越的方法。
translated by 谷歌翻译
预测住宅功率使用对于辅助智能电网来管理和保护能量以确保有效使用的必不可少。客户级别的准确能量预测将直接反映电网系统的效率,但由于许多影响因素,例如气象和占用模式,预测建筑能源使用是复杂的任务。在成瘾中,鉴于多传感器环境的出现以及能量消费者和智能电网之间的两种方式通信,在能量互联网(IOE)中,高维时间序列越来越多地出现。因此,能够计算高维时间序列的方法在智能建筑和IOE应用中具有很大的价值。模糊时间序列(FTS)模型作为数据驱动的非参数模型的易于实现和高精度。不幸的是,如果所有功能用于训练模型,现有的FTS模型可能是不可行的。我们通过将原始高维数据投入低维嵌入空间并在该低维表示中使用多变量FTS方法来提出一种用于处理高维时间序列的新方法。组合这些技术使得能够更好地表示多变量时间序列的复杂内容和更准确的预测。
translated by 谷歌翻译
With the evolution of power systems as it is becoming more intelligent and interactive system while increasing in flexibility with a larger penetration of renewable energy sources, demand prediction on a short-term resolution will inevitably become more and more crucial in designing and managing the future grid, especially when it comes to an individual household level. Projecting the demand for electricity for a single energy user, as opposed to the aggregated power consumption of residential load on a wide scale, is difficult because of a considerable number of volatile and uncertain factors. This paper proposes a customized GRU (Gated Recurrent Unit) and Long Short-Term Memory (LSTM) architecture to address this challenging problem. LSTM and GRU are comparatively newer and among the most well-adopted deep learning approaches. The electricity consumption datasets were obtained from individual household smart meters. The comparison shows that the LSTM model performs better for home-level forecasting than alternative prediction techniques-GRU in this case. To compare the NN-based models with contrast to the conventional statistical technique-based model, ARIMA based model was also developed and benchmarked with LSTM and GRU model outcomes in this study to show the performance of the proposed model on the collected time series data.
translated by 谷歌翻译
由于人口和全球化的增加,对能源的需求大大增加。因此,准确的能源消耗预测已成为政府规划,减少能源浪费和能源管理系统稳定运行的基本先决条件。在这项工作中,我们介绍了对家庭能耗的时间序列预测的主要机器学习模型的比较分析。具体来说,我们使用WEKA(一种数据挖掘工具)首先将模型应用于Kaggle数据科学界可获得的小时和每日家庭能源消耗数据集。应用的模型是:多层感知器,K最近的邻居回归,支持向量回归,线性回归和高斯过程。其次,我们还在Python实施了时间序列预测模型Arima和Var,以预测有或没有天气数据的韩国家庭能源消耗。我们的结果表明,预测能源消耗预测的最佳方法是支持向量回归,然后是多层感知器和高斯过程回归。
translated by 谷歌翻译
本文比较分析随机森林的性能和基于历史数据预测能源消耗的领域的梯度增强算法的性能。应用两种算法以单独预测能源消耗,然后使用加权平均合奏方法合并在一起。所达到的实验结果之间的比较证明,加权平均合奏方法比单独应用的两种算法中的每种都提供了更准确的结果。
translated by 谷歌翻译
电力是一种波动的电源,需要短期和长期的精力计划和资源管理。更具体地说,在短期,准确的即时能源消耗中,预测极大地提高了建筑物的效率,为采用可再生能源提供了新的途径。在这方面,数据驱动的方法,即基于机器学习的方法,开始优先于更传统的方法,因为它们不仅提供了更简化的部署方式,而且还提供了最新的结果。从这个意义上讲,这项工作应用和比较了几种深度学习算法,LSTM,CNN,CNN-LSTM和TCN的性能,在制造业内的一个真实测试中。实验结果表明,TCN是预测短期即时能源消耗的最可靠方法。
translated by 谷歌翻译
在本文中,我们提出了一种基于短期内存网络的长期方法,以根据过去的测量值预测公共建筑物的能源消耗。我们的方法包括三个主要步骤:数据处理步骤,培训和验证步骤,最后是预测步骤。我们在一个数据集上测试了我们的方法,该数据集由英国国家档案馆的主要建筑物的主要建筑物,在KEW中,作为评估指标,我们使用了平均绝对错误(MAE)和平均绝对百分比错误(Mape)。
translated by 谷歌翻译
A well-performing prediction model is vital for a recommendation system suggesting actions for energy-efficient consumer behavior. However, reliable and accurate predictions depend on informative features and a suitable model design to perform well and robustly across different households and appliances. Moreover, customers' unjustifiably high expectations of accurate predictions may discourage them from using the system in the long term. In this paper, we design a three-step forecasting framework to assess predictability, engineering features, and deep learning architectures to forecast 24 hourly load values. First, our predictability analysis provides a tool for expectation management to cushion customers' anticipations. Second, we design several new weather-, time- and appliance-related parameters for the modeling procedure and test their contribution to the model's prediction performance. Third, we examine six deep learning techniques and compare them to tree- and support vector regression benchmarks. We develop a robust and accurate model for the appliance-level load prediction based on four datasets from four different regions (US, UK, Austria, and Canada) with an equal set of appliances. The empirical results show that cyclical encoding of time features and weather indicators alongside a long-short term memory (LSTM) model offer the optimal performance.
translated by 谷歌翻译
基于机器学习(ML)的智能仪表数据分析对于先进的计量基础设施(AMI)中的能源管理和需求 - 响应应用非常有前途。开发AMI的分布式ML应用程序中的一个关键挑战是保留用户隐私,同时允许有效的最终用户参与。本文解决了这一挑战,并为AMI中的ML应用程序提出了隐私保留的联合学习框架。我们将每个智能仪表视为托管使用中央聚合器或数据集中器的信息的ML应用程序的联邦边缘设备。而不是传输智能仪表感测的原始数据,ML模型权重被传送到聚合器以保护隐私。聚合器处理这些参数以设计可以在每个边缘设备处替换的鲁棒ML模型。我们还讨论了在共享ML模型参数的同时提高隐私和提高通信效率的策略,适用于AMI中的网络连接相对较慢。我们展示了在联合案例联盟ML(FML)应用程序上的提议框架,其提高了短期负荷预测(STLF)。我们使用长期内存(LSTM)经常性神经网络(RNN)模型进行STLF。在我们的体系结构中,我们假设有一个聚合器连接到一组智能电表。聚合器使用从联合智能仪表接收的学习模型渐变,以生成聚合,鲁棒RNN模型,其提高了个人和聚合STLF的预测精度。我们的结果表明,通过FML,预测精度增加,同时保留最终用户的数据隐私。
translated by 谷歌翻译
负载预测是能源行业中执行的一项重要任务,以帮助平衡供应并保持电网的稳定负载。随着供应过渡向不太可靠的可再生能源产生,智能电表将证明是促进这些预测任务的重要组成部分。但是,在隐私意识的消费者中,智能电表的采用率很低,这些消费者害怕侵犯其细粒度的消费数据。在这项工作中,我们建议并探索一种基于联合学习的方法(FL)方法,以分布式协作方式培训预测模型,同时保留基础数据的隐私。我们比较了两种方法:FL和聚集的变体FL+HC与非私有的,集中的学习方法和完全私人的本地化学习方法。在这些方法中,我们使用RMSE和计算效率测量模型性能。此外,我们建议FL策略之后是个性化步骤,并表明可以通过这样做可以提高模型性能。我们表明,FL+HC紧随其后的是个性化可以实现$ \ sim $ 5 \%的模型性能提高,而与本地化学习相比,计算$ \ sim $ 10倍。最后,我们提供有关私人汇总预测的建议,以构建私人端到端负载预测应用程序。
translated by 谷歌翻译
可持续性需要提高能源效率,而最小的废物则需要提高能源效率。因此,未来的电力系统应提供高水平的灵活性IIN控制能源消耗。对于能源行业的决策者和专业人员而言,对未来能源需求/负载的精确预测非常重要。预测能源负载对能源提供者和客户变得更有优势,使他们能够建立有效的生产策略以满足需求。这项研究介绍了两个混合级联模型,以预测不同分辨率中的多步户家庭功耗。第一个模型将固定小波变换(SWT)集成为有效的信号预处理技术,卷积神经网络和长期短期记忆(LSTM)。第二种混合模型将SWT与名为Transformer的基于自我注意的神经网络结构相结合。使用时频分析方法(例如多步预测问题中的SWT)的主要限制是,它们需要顺序信号,在多步骤预测应用程序中有问题的信号重建问题。级联模型可以通过使用回收输出有效地解决此问题。实验结果表明,与现有的多步电消耗预测方法相比,提出的混合模型实现了出色的预测性能。结果将为更准确和可靠的家庭用电量预测铺平道路。
translated by 谷歌翻译
电力公用事业公司依靠短期需求预测,以期待重大变化的预期调整生产和分配。该系统审查分析了2000年至2019年之间的学术期刊上发布的240份作品,专注于将人工智能(AI),统计和混合模型应用于短期负荷预测(STLF)。这项工作代表了迄今为止对该主题的最全面的审查。进行了对文献的完整分析,以确定最流行和最准确的技术以及现有的空隙。研究结果表明,尽管人工神经网络(ANN)继续成为最常用的独立技术,但研究人员已经超出了不同技术的混合组合,以利用各种方法的组合优势。审查表明,这些混合组合通常可以实现超过99%的预测精度。短期预测最成功的持续时间已被识别为每小时间隔的一天的预测。审查已确定访问培训模型所需的数据集的不足。在亚洲,欧洲,北美和澳大利亚以外的研究区域中已经确定了一个显着差距。
translated by 谷歌翻译
电价是影响所有市场参与者决策的关键因素。准确的电价预测非常重要,并且由于各种因素,电价高度挥发性,电价也非常具有挑战性。本文提出了一项综合的长期经常性卷积网络(ILRCN)模型,以预测考虑到市场价格的大多数贡献属性的电力价格。所提出的ILRCN模型将卷积神经网络和长短期记忆(LSTM)算法的功能与所提出的新颖的条件纠错项相结合。组合的ILRCN模型可以识别输入数据内的线性和非线性行为。我们使用鄂尔顿批发市场价格数据以及负载型材,温度和其他因素来说明所提出的模型。使用平均绝对误差和准确性等性能/评估度量来验证所提出的ILRCN电价预测模型的性能。案例研究表明,与支持向量机(SVM)模型,完全连接的神经网络模型,LSTM模型和LRCN模型,所提出的ILRCN模型在电价预测中是准确和有效的电力价格预测。
translated by 谷歌翻译
随着高级数字技术的蓬勃发展,用户以及能源分销商有可能获得有关家庭用电的详细信息。这些技术也可以用来预测家庭用电量(又称负载)。在本文中,我们研究了变分模式分解和深度学习技术的使用,以提高负载预测问题的准确性。尽管在文献中已经研究了这个问题,但选择适当的分解水平和提供更好预测性能的深度学习技术的关注较少。这项研究通过研究六个分解水平和五个不同的深度学习网络的影响来弥合这一差距。首先,使用变分模式分解将原始负载轮廓分解为固有模式函数,以减轻其非平稳方面。然后,白天,小时和过去的电力消耗数据作为三维输入序列馈送到四级小波分解网络模型。最后,将与不同固有模式函数相关的预测序列组合在一起以形成聚合预测序列。使用摩洛哥建筑物的电力消耗数据集(MORED)的五个摩洛哥家庭的负载曲线评估了该方法,并根据最新的时间序列模型和基线持久性模型进行了基准测试。
translated by 谷歌翻译
电力行业正在大力实施智能网格技术,以提高可靠性,可用性,安全性和效率。该实施需要技术进步,标准和法规的发展以及测试和计划。智能电网载荷预测和管理对于降低需求波动和改善连接发电机,分销商和零售商的市场机制至关重要。在政策实施或外部干预措施中,有必要分析其对电力需求的影响的不确定性,以使系统对需求的波动更加准确。本文分析了外部干预的不确定性对电力需求的影响。它实现了一种结合概率和全局预测模型的框架,使用深度学习方法来估计干预措施的因果影响分布。通过预测受影响实例的反事实分布结果,然后将其与实际结果进行对比来评估因果效应。我们将COVID-19锁定对能源使用的影响视为评估这种干预对电力需求分布的不均匀影响的案例研究。我们可以证明,在澳大利亚和某些欧洲国家的最初封锁期间,槽通常比峰值更大的下降,而平均值几乎不受影响。
translated by 谷歌翻译
建筑物和校园的电力负荷预测随着分布式能源(DERs)的渗透而越来越重要。高效的操作和调度DER需要合理准确的未来能耗预测,以便进行现场发电和存储资产的近实时优化派遣。电力公用事业公司传统上对跨越地理区域的负载口袋进行了负荷预测,因此预测不是建筑物和校园运营商的常见做法。鉴于电网交互式高效建筑域中的研究和原型趋势不断发展,超出简单算法预测精度的特点对于确定智能建筑算法的真正效用很重要。其他特性包括部署架构的整体设计和预测系统的运行效率。在这项工作中,我们介绍了一个基于深度学习的负载预测系统,将来预测1小时的时间间隔18小时。我们还讨论了与此类系统的实时部署相关的挑战,以及通过在国家可再生能源实验室智能校园计划中开发的全功能预测系统提供的研究机会。
translated by 谷歌翻译
负载预测在电力系统的分析和网格计划中至关重要。因此,我们首先提出一种基于联邦深度学习和非侵入性负载监测(NILM)的家庭负载预测方法。就我们所知,这是基于尼尔姆的家庭负载预测中有关联合学习(FL)的首次研究。在这种方法中,通过非侵入性负载监控将集成功率分解为单个设备功率,并且使用联合深度学习模型分别预测单个设备的功率。最后,将单个设备的预测功率值聚合以形成总功率预测。具体而言,通过单独预测电气设备以获得预测的功率,它可以避免由于单个设备的功率信号的强烈依赖性而造成的误差。在联邦深度学习预测模型中,具有权力数据的家主共享本地模型的参数,而不是本地电源数据,从而保证了家庭用户数据的隐私。案例结果表明,所提出的方法比直接预测整个汇总信号的传统方法提供了更好的预测效果。此外,设计和实施了各种联合学习环境中的实验,以验证该方法的有效性。
translated by 谷歌翻译
Wind power forecasting helps with the planning for the power systems by contributing to having a higher level of certainty in decision-making. Due to the randomness inherent to meteorological events (e.g., wind speeds), making highly accurate long-term predictions for wind power can be extremely difficult. One approach to remedy this challenge is to utilize weather information from multiple points across a geographical grid to obtain a holistic view of the wind patterns, along with temporal information from the previous power outputs of the wind farms. Our proposed CNN-RNN architecture combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to extract spatial and temporal information from multi-dimensional input data to make day-ahead predictions. In this regard, our method incorporates an ultra-wide learning view, combining data from multiple numerical weather prediction models, wind farms, and geographical locations. Additionally, we experiment with global forecasting approaches to understand the impact of training the same model over the datasets obtained from multiple different wind farms, and we employ a method where spatial information extracted from convolutional layers is passed to a tree ensemble (e.g., Light Gradient Boosting Machine (LGBM)) instead of fully connected layers. The results show that our proposed CNN-RNN architecture outperforms other models such as LGBM, Extra Tree regressor and linear regression when trained globally, but fails to replicate such performance when trained individually on each farm. We also observe that passing the spatial information from CNN to LGBM improves its performance, providing further evidence of CNN's spatial feature extraction capabilities.
translated by 谷歌翻译
分布式的小型太阳能光伏(PV)系统正在以快速增加的速度安装。这可能会对分销网络和能源市场产生重大影响。结果,在不同时间分辨率和视野中,非常需要改善对这些系统发电的预测。但是,预测模型的性能取决于分辨率和地平线。在这种情况下,将多个模型的预测结合到单个预测中的预测组合(合奏)可能是鲁棒的。因此,在本文中,我们提供了对五个最先进的预测模型的性能以及在多个分辨率和视野下的现有预测组合的比较和见解。我们提出了一种基于粒子群优化(PSO)的预测组合方法,该方法将通过加权单个模型产生的预测来使预报掌握能够为手头的任务产生准确的预测。此外,我们将提出的组合方法的性能与现有的预测组合方法进行了比较。使用现实世界中的PV电源数据集进行了全面的评估,该数据集在美国三个位置的25个房屋中测得。在四种不同的分辨率和四个不同视野之间的结果表明,基于PSO的预测组合方法的表现优于使用任何单独的预测模型和其他预测组合的使用,而平均平均绝对规模误差降低了3.81%,而最佳性能则最佳性能单个个人模型。我们的方法使太阳预报员能够为其应用产生准确的预测,而不管预测分辨率或视野如何。
translated by 谷歌翻译
模糊认知地图(FCMS)被出现为可解释的签名加权数字化方法,其由代表概念之间的依赖性的节点(概念)和权重。虽然FCMS在各种时间序列预测应用中取得了相当大的成果,但设计了具有较节约的训练方法的FCM模型仍然是一个开放的挑战。因此,本文介绍了一种新颖的单变量时间序列预测技术,该技术由标记为R-HFCM的一组随机高阶FCM模型组成。提出的R-HFCM模型的新颖性与将FCM和回声状态网络(ESN)的概念合并为高效且特定的储层计算(RC)模型系列,其中应用于训练模型的最小二乘算法。从另一个角度来看,R-HFCM的结构包括输入层,储存层和输出层,其中仅输出层是可训练的,同时在训练过程中随机选择每个子储存组件的重量并保持恒定。如案例研究,该模型考虑了与巴西太阳能站以及马来西亚数据集的公共数据的太阳能预测,包括马来西亚市柔佛市电源公司的每小时电负荷和温度数据。实验还包括地图尺寸,激活功能,偏置的存在和储存器的尺寸的效果,储存器的尺寸为R-HFCM方法的准确性。所获得的结果证实了所提出的R-HFCM模型与其他方法相比表现。本研究提供了证据表明,FCM可以是在时间序列建模中实施动态储存的新方法。
translated by 谷歌翻译