基于机器学习(ML)的智能仪表数据分析对于先进的计量基础设施(AMI)中的能源管理和需求 - 响应应用非常有前途。开发AMI的分布式ML应用程序中的一个关键挑战是保留用户隐私,同时允许有效的最终用户参与。本文解决了这一挑战,并为AMI中的ML应用程序提出了隐私保留的联合学习框架。我们将每个智能仪表视为托管使用中央聚合器或数据集中器的信息的ML应用程序的联邦边缘设备。而不是传输智能仪表感测的原始数据,ML模型权重被传送到聚合器以保护隐私。聚合器处理这些参数以设计可以在每个边缘设备处替换的鲁棒ML模型。我们还讨论了在共享ML模型参数的同时提高隐私和提高通信效率的策略,适用于AMI中的网络连接相对较慢。我们展示了在联合案例联盟ML(FML)应用程序上的提议框架,其提高了短期负荷预测(STLF)。我们使用长期内存(LSTM)经常性神经网络(RNN)模型进行STLF。在我们的体系结构中,我们假设有一个聚合器连接到一组智能电表。聚合器使用从联合智能仪表接收的学习模型渐变,以生成聚合,鲁棒RNN模型,其提高了个人和聚合STLF的预测精度。我们的结果表明,通过FML,预测精度增加,同时保留最终用户的数据隐私。
translated by 谷歌翻译
负载预测是能源行业中执行的一项重要任务,以帮助平衡供应并保持电网的稳定负载。随着供应过渡向不太可靠的可再生能源产生,智能电表将证明是促进这些预测任务的重要组成部分。但是,在隐私意识的消费者中,智能电表的采用率很低,这些消费者害怕侵犯其细粒度的消费数据。在这项工作中,我们建议并探索一种基于联合学习的方法(FL)方法,以分布式协作方式培训预测模型,同时保留基础数据的隐私。我们比较了两种方法:FL和聚集的变体FL+HC与非私有的,集中的学习方法和完全私人的本地化学习方法。在这些方法中,我们使用RMSE和计算效率测量模型性能。此外,我们建议FL策略之后是个性化步骤,并表明可以通过这样做可以提高模型性能。我们表明,FL+HC紧随其后的是个性化可以实现$ \ sim $ 5 \%的模型性能提高,而与本地化学习相比,计算$ \ sim $ 10倍。最后,我们提供有关私人汇总预测的建议,以构建私人端到端负载预测应用程序。
translated by 谷歌翻译
电负载预测已成为电力系统操作的组成部分。深入学习模型为此目的被发现。然而,为了达到期望的预测准确性,它们需要大量的培训数据。分享负载预测的各个家庭的电力消耗数据可能会损害用户隐私,并且在通信资源方面可能是昂贵的。因此,诸如联邦学习的边缘计算方法正在为此目的获得更多重要性。这些方法可以利用数据,而无需集中存储它。本文评估了联合学习对单个房屋负荷的短期预测以及总负荷的表现。它通过将其与集中和局部学习方案进行比较来讨论该方法的优点和缺点。此外,提出了一种新的客户端聚类方法,以减少联合学习的收敛时间。结果表明,联合学习具有良好的性能,具有0.117kWh的最小根均匀误差(RMSE),为单独的负载预测。
translated by 谷歌翻译
With the evolution of power systems as it is becoming more intelligent and interactive system while increasing in flexibility with a larger penetration of renewable energy sources, demand prediction on a short-term resolution will inevitably become more and more crucial in designing and managing the future grid, especially when it comes to an individual household level. Projecting the demand for electricity for a single energy user, as opposed to the aggregated power consumption of residential load on a wide scale, is difficult because of a considerable number of volatile and uncertain factors. This paper proposes a customized GRU (Gated Recurrent Unit) and Long Short-Term Memory (LSTM) architecture to address this challenging problem. LSTM and GRU are comparatively newer and among the most well-adopted deep learning approaches. The electricity consumption datasets were obtained from individual household smart meters. The comparison shows that the LSTM model performs better for home-level forecasting than alternative prediction techniques-GRU in this case. To compare the NN-based models with contrast to the conventional statistical technique-based model, ARIMA based model was also developed and benchmarked with LSTM and GRU model outcomes in this study to show the performance of the proposed model on the collected time series data.
translated by 谷歌翻译
Mobile traffic prediction is of great importance on the path of enabling 5G mobile networks to perform smart and efficient infrastructure planning and management. However, available data are limited to base station logging information. Hence, training methods for generating high-quality predictions that can generalize to new observations on different parties are in demand. Traditional approaches require collecting measurements from different base stations and sending them to a central entity, followed by performing machine learning operations using the received data. The dissemination of local observations raises privacy, confidentiality, and performance concerns, hindering the applicability of machine learning techniques. Various distributed learning methods have been proposed to address this issue, but their application to traffic prediction has yet to be explored. In this work, we study the effectiveness of federated learning applied to raw base station aggregated LTE data for time-series forecasting. We evaluate one-step predictions using 5 different neural network architectures trained with a federated setting on non-iid data. The presented algorithms have been submitted to the Global Federated Traffic Prediction for 5G and Beyond Challenge. Our results show that the learning architectures adapted to the federated setting achieve equivalent prediction error to the centralized setting, pre-processing techniques on base stations lead to higher forecasting accuracy, while state-of-the-art aggregators do not outperform simple approaches.
translated by 谷歌翻译
负载预测在电力系统的分析和网格计划中至关重要。因此,我们首先提出一种基于联邦深度学习和非侵入性负载监测(NILM)的家庭负载预测方法。就我们所知,这是基于尼尔姆的家庭负载预测中有关联合学习(FL)的首次研究。在这种方法中,通过非侵入性负载监控将集成功率分解为单个设备功率,并且使用联合深度学习模型分别预测单个设备的功率。最后,将单个设备的预测功率值聚合以形成总功率预测。具体而言,通过单独预测电气设备以获得预测的功率,它可以避免由于单个设备的功率信号的强烈依赖性而造成的误差。在联邦深度学习预测模型中,具有权力数据的家主共享本地模型的参数,而不是本地电源数据,从而保证了家庭用户数据的隐私。案例结果表明,所提出的方法比直接预测整个汇总信号的传统方法提供了更好的预测效果。此外,设计和实施了各种联合学习环境中的实验,以验证该方法的有效性。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
通过使用智能电表,零售商可以收集有关消费者行为的大量数据。从收集的数据中,零售商可以获取家庭概况信息并实施需求响应。尽管零售商更喜欢在不同客户中获取尽可能准确的模型,但有两个主要挑战。首先,零售市场中的不同零售商不会共享消费者的电力消耗数据,因为这些数据被视为其资产,这导致了数据岛的问题。其次,由于不同的零售商可以为各种消费者服务,因此电力负载数据是高度异质的。为此,提出了基于共识算法和长期记忆(LSTM)的完全分布的短期负载预测框架,这可能保护客户的隐私并满足准确的负载预测要求。具体而言,利用完全分布式的学习框架进行分布式培训,并采用共识技术来符合机密隐私。案例研究表明,所提出的方法具有相当的性能,而对准确性的集中方法具有相当的性能,但是所提出的方法显示了训练速度和数据隐私的优势。
translated by 谷歌翻译
准确的负载预测对于电力系统的电力市场运营以及电力系统中的其他实时决策任务至关重要。本文认为社区内的住宅客户的短期负荷预测(STLF)问题。现有的STLF工作主要侧重于预测馈线系统或单一客户的汇总负荷,但是在预测单个设备水平的负荷上,已经努力。在这项工作中,我们介绍了一种用于有效预测各个电器的功耗的STLF算法。所提出的方法在深度学习中强大的经常性神经网络(RNN)架构,称为长短短期记忆(LSTM)。当每个设备具有唯一重复的消耗模式时,将跟踪预测误差的模式,使得过去的预测误差可用于提高最终预测性能。实际负载数据集的数值测试证明了在现有的基于LSTM的方法和其他基准方法上提高了所提出的方法。
translated by 谷歌翻译
包含间歇性和可再生能源的含量增加了电力系统需求预测的重要性。由于它们提供的测量粒度,智能电表可以在需求预测中发挥关键作用。消费者的隐私问题,公用事业和供应商不愿与竞争对手或第三方共享数据,以及监管限制是一些限制智能米预测面。本文介绍了使用智能电表数据作为前一个约束的解决方案的短期需求预测的协作机器学习方法。隐私保存技术和联合学习使能够确保消费者对两者的机密性,它们的数据,使用它生成的模型(差异隐私),以及通信均值(安全聚合)。评估的方法考虑了几种方案,探讨了传统的集中方法如何在分散,协作和私人系统的方向上投射。在评估中获得的结果提供了几乎完美的隐私预算(1.39,$ 10E ^ {5} $)和(2.01,$ 10e ^ { - 5} $),具有可忽略不计的性能妥协。
translated by 谷歌翻译
In recent years, deep learning (DL) models have demonstrated remarkable achievements on non-trivial tasks such as speech recognition and natural language understanding. One of the significant contributors to its success is the proliferation of end devices that acted as a catalyst to provide data for data-hungry DL models. However, computing DL training and inference is the main challenge. Usually, central cloud servers are used for the computation, but it opens up other significant challenges, such as high latency, increased communication costs, and privacy concerns. To mitigate these drawbacks, considerable efforts have been made to push the processing of DL models to edge servers. Moreover, the confluence point of DL and edge has given rise to edge intelligence (EI). This survey paper focuses primarily on the fifth level of EI, called all in-edge level, where DL training and inference (deployment) are performed solely by edge servers. All in-edge is suitable when the end devices have low computing resources, e.g., Internet-of-Things, and other requirements such as latency and communication cost are important in mission-critical applications, e.g., health care. Firstly, this paper presents all in-edge computing architectures, including centralized, decentralized, and distributed. Secondly, this paper presents enabling technologies, such as model parallelism and split learning, which facilitate DL training and deployment at edge servers. Thirdly, model adaptation techniques based on model compression and conditional computation are described because the standard cloud-based DL deployment cannot be directly applied to all in-edge due to its limited computational resources. Fourthly, this paper discusses eleven key performance metrics to evaluate the performance of DL at all in-edge efficiently. Finally, several open research challenges in the area of all in-edge are presented.
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
智能仪表测量值虽然对于准确的需求预测至关重要,但仍面临一些缺点,包括消费者的隐私,数据泄露问题,仅举几例。最近的文献探索了联合学习(FL)作为一种有前途的隐私机器学习替代方案,该替代方案可以协作学习模型,而无需将私人原始数据暴露于短期负载预测中。尽管有着美德,但标准FL仍然容易受到棘手的网络威胁,称为拜占庭式攻击,这是由错误和/或恶意客户进行的。因此,为了提高联邦联邦短期负载预测对拜占庭威胁的鲁棒性,我们开发了一个最先进的基于私人安全的FL框架,以确保单个智能电表的数据的隐私,同时保护FL的安全性模型和架构。我们提出的框架利用了通过符号随机梯度下降(SignsGD)算法的梯度量化的想法,在本地模型培训后,客户仅将梯度的“符号”传输到控制中心。当我们通过涉及一组拜占庭攻击模型的基准神经网络的实验突出显示时,我们提出的方法会非常有效地减轻此类威胁,从而优于常规的FED-SGD模型。
translated by 谷歌翻译
随着智能传感器的部署和通信技术的进步,大数据分析在智能电网域中大大流行,告知利益相关者最好的电力利用策略。但是,这些电源相关数据被不同的各方存储和拥有。例如,功耗数据存储在跨城市的众多变压器站中;移动公司持有的人口的流动性数据,这是耗电量重要指标。直接数据分享可能会妥协党的福利,个人隐私甚至国家安全。灵感来自谷歌AI的联邦学习计划,我们向智能电网提出了联合学习框架,这使得能够协作学习功耗模式而不会泄漏各个电力迹线。当数据分散在样本空间中时,采用横向联合学习;另一方面,垂直联合学习是为散射在特征空间中的数据的情况而设计的。案例研究表明,通过适当的加密方案,如Paillier加密,从提出的框架构建的机器学习模型是无损,隐私保留和有效的。最后,讨论了智能电网其他方面的联合学习的有希望的未来,包括电动车辆,分布式发电/消费和集成能量系统。
translated by 谷歌翻译
Wind power forecasting helps with the planning for the power systems by contributing to having a higher level of certainty in decision-making. Due to the randomness inherent to meteorological events (e.g., wind speeds), making highly accurate long-term predictions for wind power can be extremely difficult. One approach to remedy this challenge is to utilize weather information from multiple points across a geographical grid to obtain a holistic view of the wind patterns, along with temporal information from the previous power outputs of the wind farms. Our proposed CNN-RNN architecture combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to extract spatial and temporal information from multi-dimensional input data to make day-ahead predictions. In this regard, our method incorporates an ultra-wide learning view, combining data from multiple numerical weather prediction models, wind farms, and geographical locations. Additionally, we experiment with global forecasting approaches to understand the impact of training the same model over the datasets obtained from multiple different wind farms, and we employ a method where spatial information extracted from convolutional layers is passed to a tree ensemble (e.g., Light Gradient Boosting Machine (LGBM)) instead of fully connected layers. The results show that our proposed CNN-RNN architecture outperforms other models such as LGBM, Extra Tree regressor and linear regression when trained globally, but fails to replicate such performance when trained individually on each farm. We also observe that passing the spatial information from CNN to LGBM improves its performance, providing further evidence of CNN's spatial feature extraction capabilities.
translated by 谷歌翻译
使用人工智能(AI)赋予无线网络中数据量的前所未有的数据量激增,为提供无处不在的数据驱动智能服务而开辟了新的视野。通过集中收集数据集和培训模型来实现传统的云彩中心学习(ML)基础的服务。然而,这种传统的训练技术包括两个挑战:(i)由于数据通信增加而导致的高通信和能源成本,(ii)通过允许不受信任的各方利用这些信息来威胁数据隐私。最近,鉴于这些限制,一种新兴的新兴技术,包括联合学习(FL),以使ML带到无线网络的边缘。通过以分布式方式培训全局模型,可以通过FL Server策划的全局模型来提取数据孤岛的好处。 FL利用分散的数据集和参与客户的计算资源,在不影响数据隐私的情况下开发广义ML模型。在本文中,我们介绍了对FL的基本面和能够实现技术的全面调查。此外,提出了一个广泛的研究,详细说明了无线网络中的流体的各种应用,并突出了他们的挑战和局限性。进一步探索了FL的疗效,其新兴的前瞻性超出了第五代(B5G)和第六代(6G)通信系统。本调查的目的是在关键的无线技术中概述了流动的技术,这些技术将作为建立对该主题的坚定了解的基础。最后,我们向未来的研究方向提供前进的道路。
translated by 谷歌翻译
非侵入性负载监控(NILM)是将总功率消耗分为单个子组件的任务。多年来,已经合并了信号处理和机器学习算法以实现这一目标。关于最先进的方法,进行了许多出版物和广泛的研究工作,以涉及最先进的方法。科学界最初使用机器学习工具的尼尔姆问题制定和描述的最初兴趣已经转变为更实用的尼尔姆。如今,我们正处于成熟的尼尔姆时期,在现实生活中的应用程序方案中尝试使用尼尔姆。因此,算法的复杂性,可转移性,可靠性,实用性和普遍的信任度是主要的关注问题。这篇评论缩小了早期未成熟的尼尔姆时代与成熟的差距。特别是,本文仅对住宅电器的尼尔姆方法提供了全面的文献综述。本文分析,总结并介绍了大量最近发表的学术文章的结果。此外,本文讨论了这些方法的亮点,并介绍了研究人员应考虑的研究困境,以应用尼尔姆方法。最后,我们表明需要将传统分类模型转移到一个实用且值得信赖的框架中。
translated by 谷歌翻译
A well-performing prediction model is vital for a recommendation system suggesting actions for energy-efficient consumer behavior. However, reliable and accurate predictions depend on informative features and a suitable model design to perform well and robustly across different households and appliances. Moreover, customers' unjustifiably high expectations of accurate predictions may discourage them from using the system in the long term. In this paper, we design a three-step forecasting framework to assess predictability, engineering features, and deep learning architectures to forecast 24 hourly load values. First, our predictability analysis provides a tool for expectation management to cushion customers' anticipations. Second, we design several new weather-, time- and appliance-related parameters for the modeling procedure and test their contribution to the model's prediction performance. Third, we examine six deep learning techniques and compare them to tree- and support vector regression benchmarks. We develop a robust and accurate model for the appliance-level load prediction based on four datasets from four different regions (US, UK, Austria, and Canada) with an equal set of appliances. The empirical results show that cyclical encoding of time features and weather indicators alongside a long-short term memory (LSTM) model offer the optimal performance.
translated by 谷歌翻译
In this paper, we propose a new short-term load forecasting (STLF) model based on contextually enhanced hybrid and hierarchical architecture combining exponential smoothing (ES) and a recurrent neural network (RNN). The model is composed of two simultaneously trained tracks: the context track and the main track. The context track introduces additional information to the main track. It is extracted from representative series and dynamically modulated to adjust to the individual series forecasted by the main track. The RNN architecture consists of multiple recurrent layers stacked with hierarchical dilations and equipped with recently proposed attentive dilated recurrent cells. These cells enable the model to capture short-term, long-term and seasonal dependencies across time series as well as to weight dynamically the input information. The model produces both point forecasts and predictive intervals. The experimental part of the work performed on 35 forecasting problems shows that the proposed model outperforms in terms of accuracy its predecessor as well as standard statistical models and state-of-the-art machine learning models.
translated by 谷歌翻译
电力行业正在大力实施智能网格技术,以提高可靠性,可用性,安全性和效率。该实施需要技术进步,标准和法规的发展以及测试和计划。智能电网载荷预测和管理对于降低需求波动和改善连接发电机,分销商和零售商的市场机制至关重要。在政策实施或外部干预措施中,有必要分析其对电力需求的影响的不确定性,以使系统对需求的波动更加准确。本文分析了外部干预的不确定性对电力需求的影响。它实现了一种结合概率和全局预测模型的框架,使用深度学习方法来估计干预措施的因果影响分布。通过预测受影响实例的反事实分布结果,然后将其与实际结果进行对比来评估因果效应。我们将COVID-19锁定对能源使用的影响视为评估这种干预对电力需求分布的不均匀影响的案例研究。我们可以证明,在澳大利亚和某些欧洲国家的最初封锁期间,槽通常比峰值更大的下降,而平均值几乎不受影响。
translated by 谷歌翻译