建筑物和校园的电力负荷预测随着分布式能源(DERs)的渗透而越来越重要。高效的操作和调度DER需要合理准确的未来能耗预测,以便进行现场发电和存储资产的近实时优化派遣。电力公用事业公司传统上对跨越地理区域的负载口袋进行了负荷预测,因此预测不是建筑物和校园运营商的常见做法。鉴于电网交互式高效建筑域中的研究和原型趋势不断发展,超出简单算法预测精度的特点对于确定智能建筑算法的真正效用很重要。其他特性包括部署架构的整体设计和预测系统的运行效率。在这项工作中,我们介绍了一个基于深度学习的负载预测系统,将来预测1小时的时间间隔18小时。我们还讨论了与此类系统的实时部署相关的挑战,以及通过在国家可再生能源实验室智能校园计划中开发的全功能预测系统提供的研究机会。
translated by 谷歌翻译
Energy consumption in buildings, both residential and commercial, accounts for approximately 40% of all energy usage in the U.S., and similar numbers are being reported from countries around the world. This significant amount of energy is used to maintain a comfortable, secure, and productive environment for the occupants. So, it is crucial that the energy consumption in buildings must be optimized, all the while maintaining satisfactory levels of occupant comfort, health, and safety. Recently, Machine Learning has been proven to be an invaluable tool in deriving important insights from data and optimizing various systems. In this work, we review the ways in which machine learning has been leveraged to make buildings smart and energy-efficient. For the convenience of readers, we provide a brief introduction of several machine learning paradigms and the components and functioning of each smart building system we cover. Finally, we discuss challenges faced while implementing machine learning algorithms in smart buildings and provide future avenues for research at the intersection of smart buildings and machine learning.
translated by 谷歌翻译
Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.
translated by 谷歌翻译
Traditional electrical power grids have long suffered from operational unreliability, instability, inflexibility, and inefficiency. Smart grids (or smart energy systems) continue to transform the energy sector with emerging technologies, renewable energy sources, and other trends. Artificial intelligence (AI) is being applied to smart energy systems to process massive and complex data in this sector and make smart and timely decisions. However, the lack of explainability and governability of AI is a major concern for stakeholders hindering a fast uptake of AI in the energy sector. This paper provides a review of AI explainability and governance in smart energy systems. We collect 3,568 relevant papers from the Scopus database, automatically discover 15 parameters or themes for AI governance in energy and elaborate the research landscape by reviewing over 150 papers and providing temporal progressions of the research. The methodology for discovering parameters or themes is based on "deep journalism", our data-driven deep learning-based big data analytics approach to automatically discover and analyse cross-sectional multi-perspective information to enable better decision-making and develop better instruments for governance. The findings show that research on AI explainability in energy systems is segmented and narrowly focussed on a few AI traits and energy system problems. This paper deepens our knowledge of AI governance in energy and is expected to help governments, industry, academics, energy prosumers, and other stakeholders to understand the landscape of AI in the energy sector, leading to better design, operations, utilisation, and risk management of energy systems.
translated by 谷歌翻译
作为行业4.0时代的一项新兴技术,数字双胞胎因其承诺进一步优化流程设计,质量控制,健康监测,决策和政策制定等,通过全面对物理世界进行建模,以进一步优化流程设计,质量控制,健康监测,决策和政策,因此获得了前所未有的关注。互连的数字模型。在一系列两部分的论文中,我们研究了不同建模技术,孪生启用技术以及数字双胞胎常用的不确定性量化和优化方法的基本作用。第二篇论文介绍了数字双胞胎的关键启示技术的文献综述,重点是不确定性量化,优化方法,开源数据集和工具,主要发现,挑战和未来方向。讨论的重点是当前的不确定性量化和优化方法,以及如何在数字双胞胎的不同维度中应用它们。此外,本文介绍了一个案例研究,其中构建和测试了电池数字双胞胎,以说明在这两部分评论中回顾的一些建模和孪生方法。 GITHUB上可以找到用于生成案例研究中所有结果和数字的代码和预处理数据。
translated by 谷歌翻译
非侵入性负载监控(NILM)是将总功率消耗分为单个子组件的任务。多年来,已经合并了信号处理和机器学习算法以实现这一目标。关于最先进的方法,进行了许多出版物和广泛的研究工作,以涉及最先进的方法。科学界最初使用机器学习工具的尼尔姆问题制定和描述的最初兴趣已经转变为更实用的尼尔姆。如今,我们正处于成熟的尼尔姆时期,在现实生活中的应用程序方案中尝试使用尼尔姆。因此,算法的复杂性,可转移性,可靠性,实用性和普遍的信任度是主要的关注问题。这篇评论缩小了早期未成熟的尼尔姆时代与成熟的差距。特别是,本文仅对住宅电器的尼尔姆方法提供了全面的文献综述。本文分析,总结并介绍了大量最近发表的学术文章的结果。此外,本文讨论了这些方法的亮点,并介绍了研究人员应考虑的研究困境,以应用尼尔姆方法。最后,我们表明需要将传统分类模型转移到一个实用且值得信赖的框架中。
translated by 谷歌翻译
可持续性需要提高能源效率,而最小的废物则需要提高能源效率。因此,未来的电力系统应提供高水平的灵活性IIN控制能源消耗。对于能源行业的决策者和专业人员而言,对未来能源需求/负载的精确预测非常重要。预测能源负载对能源提供者和客户变得更有优势,使他们能够建立有效的生产策略以满足需求。这项研究介绍了两个混合级联模型,以预测不同分辨率中的多步户家庭功耗。第一个模型将固定小波变换(SWT)集成为有效的信号预处理技术,卷积神经网络和长期短期记忆(LSTM)。第二种混合模型将SWT与名为Transformer的基于自我注意的神经网络结构相结合。使用时频分析方法(例如多步预测问题中的SWT)的主要限制是,它们需要顺序信号,在多步骤预测应用程序中有问题的信号重建问题。级联模型可以通过使用回收输出有效地解决此问题。实验结果表明,与现有的多步电消耗预测方法相比,提出的混合模型实现了出色的预测性能。结果将为更准确和可靠的家庭用电量预测铺平道路。
translated by 谷歌翻译
With the evolution of power systems as it is becoming more intelligent and interactive system while increasing in flexibility with a larger penetration of renewable energy sources, demand prediction on a short-term resolution will inevitably become more and more crucial in designing and managing the future grid, especially when it comes to an individual household level. Projecting the demand for electricity for a single energy user, as opposed to the aggregated power consumption of residential load on a wide scale, is difficult because of a considerable number of volatile and uncertain factors. This paper proposes a customized GRU (Gated Recurrent Unit) and Long Short-Term Memory (LSTM) architecture to address this challenging problem. LSTM and GRU are comparatively newer and among the most well-adopted deep learning approaches. The electricity consumption datasets were obtained from individual household smart meters. The comparison shows that the LSTM model performs better for home-level forecasting than alternative prediction techniques-GRU in this case. To compare the NN-based models with contrast to the conventional statistical technique-based model, ARIMA based model was also developed and benchmarked with LSTM and GRU model outcomes in this study to show the performance of the proposed model on the collected time series data.
translated by 谷歌翻译
电力行业正在大力实施智能网格技术,以提高可靠性,可用性,安全性和效率。该实施需要技术进步,标准和法规的发展以及测试和计划。智能电网载荷预测和管理对于降低需求波动和改善连接发电机,分销商和零售商的市场机制至关重要。在政策实施或外部干预措施中,有必要分析其对电力需求的影响的不确定性,以使系统对需求的波动更加准确。本文分析了外部干预的不确定性对电力需求的影响。它实现了一种结合概率和全局预测模型的框架,使用深度学习方法来估计干预措施的因果影响分布。通过预测受影响实例的反事实分布结果,然后将其与实际结果进行对比来评估因果效应。我们将COVID-19锁定对能源使用的影响视为评估这种干预对电力需求分布的不均匀影响的案例研究。我们可以证明,在澳大利亚和某些欧洲国家的最初封锁期间,槽通常比峰值更大的下降,而平均值几乎不受影响。
translated by 谷歌翻译
评估能源转型和能源市场自由化对资源充足性的影响是一种越来越重要和苛刻的任务。能量系统的上升复杂性需要足够的能量系统建模方法,从而提高计算要求。此外,随着复杂性,同样调用概率评估和场景分析同样增加不确定性。为了充分和高效地解决这些各种要求,需要来自数据科学领域的新方法来加速当前方法。通过我们的系统文献综述,我们希望缩小三个学科之间的差距(1)电力供应安全性评估,(2)人工智能和(3)实验设计。为此,我们对所选应用领域进行大规模的定量审查,并制作彼此不同学科的合成。在其他发现之外,我们使用基于AI的方法和应用程序的AI方法和应用来确定电力供应模型的复杂安全性的元素,并作为未充分涵盖的应用领域的储存调度和(非)可用性。我们结束了推出了一种新的方法管道,以便在评估电力供应安全评估时充分有效地解决当前和即将到来的挑战。
translated by 谷歌翻译
A well-performing prediction model is vital for a recommendation system suggesting actions for energy-efficient consumer behavior. However, reliable and accurate predictions depend on informative features and a suitable model design to perform well and robustly across different households and appliances. Moreover, customers' unjustifiably high expectations of accurate predictions may discourage them from using the system in the long term. In this paper, we design a three-step forecasting framework to assess predictability, engineering features, and deep learning architectures to forecast 24 hourly load values. First, our predictability analysis provides a tool for expectation management to cushion customers' anticipations. Second, we design several new weather-, time- and appliance-related parameters for the modeling procedure and test their contribution to the model's prediction performance. Third, we examine six deep learning techniques and compare them to tree- and support vector regression benchmarks. We develop a robust and accurate model for the appliance-level load prediction based on four datasets from four different regions (US, UK, Austria, and Canada) with an equal set of appliances. The empirical results show that cyclical encoding of time features and weather indicators alongside a long-short term memory (LSTM) model offer the optimal performance.
translated by 谷歌翻译
电力是一种波动的电源,需要短期和长期的精力计划和资源管理。更具体地说,在短期,准确的即时能源消耗中,预测极大地提高了建筑物的效率,为采用可再生能源提供了新的途径。在这方面,数据驱动的方法,即基于机器学习的方法,开始优先于更传统的方法,因为它们不仅提供了更简化的部署方式,而且还提供了最新的结果。从这个意义上讲,这项工作应用和比较了几种深度学习算法,LSTM,CNN,CNN-LSTM和TCN的性能,在制造业内的一个真实测试中。实验结果表明,TCN是预测短期即时能源消耗的最可靠方法。
translated by 谷歌翻译
在过去的十年中,数字双胞胎的概念在受欢迎程度上爆发了,但围绕其多个定义,其新颖性作为新技术的新颖性以及其实际适用性仍然存在,尽管进行了许多评论,调查和新闻稿,但其实际适用性仍然存在。探索了数字双胞胎一词的历史,以及其在产品生命周期管理,资产维护和设备车队管理,运营和计划领域的初始背景。还基于七个基本要素提供了一个最小可行的框架来利用数字双胞胎的定义。还概述了采用DT方法的DT应用程序和行业的简短旅行。预测维护领域突出了数字双胞胎框架的应用,并使用基于机器学习和基于物理的建模的扩展。采用机器学习和基于物理的建模的组合形成混合数字双胞胎框架,可以协同减轻隔离使用时每种方法的缺点。还讨论了实践实施数字双胞胎模型的关键挑战。随着数字双技术的快速增长及其成熟,预计将实现实质性增强工具和解决方案的巨大希望,以实现智能设备的智能维护。
translated by 谷歌翻译
预测住宅功率使用对于辅助智能电网来管理和保护能量以确保有效使用的必不可少。客户级别的准确能量预测将直接反映电网系统的效率,但由于许多影响因素,例如气象和占用模式,预测建筑能源使用是复杂的任务。在成瘾中,鉴于多传感器环境的出现以及能量消费者和智能电网之间的两种方式通信,在能量互联网(IOE)中,高维时间序列越来越多地出现。因此,能够计算高维时间序列的方法在智能建筑和IOE应用中具有很大的价值。模糊时间序列(FTS)模型作为数据驱动的非参数模型的易于实现和高精度。不幸的是,如果所有功能用于训练模型,现有的FTS模型可能是不可行的。我们通过将原始高维数据投入低维嵌入空间并在该低维表示中使用多变量FTS方法来提出一种用于处理高维时间序列的新方法。组合这些技术使得能够更好地表示多变量时间序列的复杂内容和更准确的预测。
translated by 谷歌翻译
The pervasive application of artificial intelligence and machine learning algorithms is transforming many industries and aspects of the human experience. One very important industry trend is the move to convert existing human dwellings to smart buildings, and to create new smart buildings. Smart buildings aim to mitigate climate change by reducing energy consumption and associated carbon emissions. To accomplish this, they leverage artificial intelligence, big data, and machine learning algorithms to learn and optimize system performance. These fields of research are currently very rapidly evolving and advancing, but there has been very little guidance to help engineers and architects working on smart buildings apply artificial intelligence algorithms and technologies in a systematic and effective manner. In this paper we present B-SMART: the first reference architecture for autonomic smart buildings. B-SMART facilitates the application of artificial intelligence techniques and technologies to smart buildings by decoupling conceptually distinct layers of functionality and organizing them into an autonomic control loop. We also present a case study illustrating how B-SMART can be applied to accelerate the introduction of artificial intelligence into an existing smart building.
translated by 谷歌翻译
在迅速增长的海上风电场市场中出现了增加风力涡轮机尺寸和距离的全球趋势。在英国,海上风电业于2019年生产了英国最多的电力,前一年增加了19.6%。目前,英国将进一步增加产量,旨在增加安装的涡轮机容量74.7%,如最近的冠村租赁轮次反映。通过如此巨大的增长,该部门现在正在寻求机器人和人工智能(RAI),以解决生命周期服务障碍,以支持可持续和有利可图的海上风能生产。如今,RAI应用主要用于支持运营和维护的短期目标。然而,前进,RAI在海上风基础设施的全部生命周期中有可能发挥关键作用,从测量,规划,设计,物流,运营支持,培训和退役。本文介绍了离岸可再生能源部门的RAI的第一个系统评论之一。在当前和未来的要求方面,在行业和学术界的离岸能源需求分析了rai的最先进的。我们的评论还包括对支持RAI的投资,监管和技能开发的详细评估。通过专利和学术出版数据库进行详细分析确定的关键趋势,提供了对安全合规性和可靠性的自主平台认证等障碍的见解,这是自主车队中可扩展性的数字架构,适应性居民运营和优化的适应性规划人机互动对人与自治助理的信赖伙伴关系。
translated by 谷歌翻译
深度学习模式和地球观察的协同组合承诺支持可持续发展目标(SDGS)。新的发展和夸张的申请已经在改变人类将面临生活星球挑战的方式。本文审查了当前对地球观测数据的最深入学习方法,以及其在地球观测中深度学习的快速发展受到影响和实现最严重的SDG的应用。我们系统地审查案例研究至1)实现零饥饿,2)可持续城市,3)提供保管安全,4)减轻和适应气候变化,5)保留生物多样性。关注重要的社会,经济和环境影响。提前令人兴奋的时期即将到来,算法和地球数据可以帮助我们努力解决气候危机并支持更可持续发展的地方。
translated by 谷歌翻译
In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.
translated by 谷歌翻译
A digital twin is defined as a virtual representation of a physical asset enabled through data and simulators for real-time prediction, optimization, monitoring, controlling, and improved decision-making. Unfortunately, the term remains vague and says little about its capability. Recently, the concept of capability level has been introduced to address this issue. Based on its capability, the concept states that a digital twin can be categorized on a scale from zero to five, referred to as standalone, descriptive, diagnostic, predictive, prescriptive, and autonomous, respectively. The current work introduces the concept in the context of the built environment. It demonstrates the concept by using a modern house as a use case. The house is equipped with an array of sensors that collect timeseries data regarding the internal state of the house. Together with physics-based and data-driven models, these data are used to develop digital twins at different capability levels demonstrated in virtual reality. The work, in addition to presenting a blueprint for developing digital twins, also provided future research directions to enhance the technology.
translated by 谷歌翻译
Algorithms that involve both forecasting and optimization are at the core of solutions to many difficult real-world problems, such as in supply chains (inventory optimization), traffic, and in the transition towards carbon-free energy generation in battery/load/production scheduling in sustainable energy systems. Typically, in these scenarios we want to solve an optimization problem that depends on unknown future values, which therefore need to be forecast. As both forecasting and optimization are difficult problems in their own right, relatively few research has been done in this area. This paper presents the findings of the ``IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling," held in 2021. We present a comparison and evaluation of the seven highest-ranked solutions in the competition, to provide researchers with a benchmark problem and to establish the state of the art for this benchmark, with the aim to foster and facilitate research in this area. The competition used data from the Monash Microgrid, as well as weather data and energy market data. It then focused on two main challenges: forecasting renewable energy production and demand, and obtaining an optimal schedule for the activities (lectures) and on-site batteries that lead to the lowest cost of energy. The most accurate forecasts were obtained by gradient-boosted tree and random forest models, and optimization was mostly performed using mixed integer linear and quadratic programming. The winning method predicted different scenarios and optimized over all scenarios jointly using a sample average approximation method.
translated by 谷歌翻译