多机器人系统(MRS)是一组协调的机器人,旨在相互合作并完成给定的任务。由于操作环境中的不确定性,该系统可能会遇到紧急情况,例如未观察到的障碍物,移动车辆和极端天气。蜂群等动物群体会引发集体紧急反应行为,例如绕过障碍和避免掠食者,类似于肌肉条件的反射,该反射组织局部肌肉以避免在第一反应中避免危害,而不会延迟通过大脑的危害。受此启发,我们开发了一种类似的集体反射机制,以使多机器人系统应对紧急情况。在这项研究中,基于动物集体行为分析和多代理增强学习(MARL),开发了一种由生物启发的紧急反应机制(MARL)开发的集体条件反射(CCR)。该算法使用物理模型来确定机器人是否经历了紧急情况。然后,通过相应的启发式奖励增强了涉及紧急情况的机器人的奖励,该奖励评估紧急情况和后果并决定当地机器人的参与。 CCR在三个典型的紧急情况下进行了验证:\ textit {湍流,强风和隐藏障碍物}。仿真结果表明,与基线方法相比,CCR以更快的反应速度和更安全的轨迹调整来提高机器人团队的紧急反应能力。
translated by 谷歌翻译
在过去的几十年中,多机构增强学习(MARL)一直在学术界和行业受到广泛关注。 MAL中的基本问题之一是如何全面评估不同的方法。在视频游戏或简单的模拟场景中评估了大多数现有的MAL方法。这些方法在实际情况下,尤其是多机器人系统中的性能仍然未知。本文介绍了一个可扩展的仿真平台,用于多机器人增强学习(MRRL),称为SMART,以满足这一需求。确切地说,智能由两个组成部分组成:1)一个模拟环境,该环境为培训提供了各种复杂的交互场景,以及2)现实世界中的多机器人系统,用于现实的性能评估。此外,SMART提供了代理环境API,这些API是算法实现的插件。为了说明我们平台的实用性,我们就合作驾驶车道变更方案进行了案例研究。在案例研究的基础上,我们总结了MRRL的一些独特挑战,这些挑战很少被考虑。最后,我们为鼓励和增强MRRL研究的仿真环境,相关的基准任务和最先进的基线开放。
translated by 谷歌翻译
尽管数十年的努力,但在真正的情景中的机器人导航具有波动性,不确定性,复杂性和歧义(vuca短暂),仍然是一个具有挑战性的话题。受到中枢神经系统(CNS)的启发,我们提出了一个在Vuca环境中的自主导航的分层多专家学习框架。通过考虑目标位置,路径成本和安全水平的启发式探索机制,上层执行同时映射探索和路线规划,以避免陷入盲巷,类似于CNS中的大脑。使用本地自适应模型融合多种差异策略,下层追求碰撞 - 避免和直接策略之间的平衡,作为CNS中的小脑。我们在多个平台上进行仿真和实际实验,包括腿部和轮式机器人。实验结果表明我们的算法在任务成就,时间效率和安全性方面优于现有方法。
translated by 谷歌翻译
小型无人驾驶飞机的障碍避免对于未来城市空袭(UAM)和无人机系统(UAS)交通管理(UTM)的安全性至关重要。有许多技术用于实时强大的无人机指导,但其中许多在离散的空域和控制中解决,这将需要额外的路径平滑步骤来为UA提供灵活的命令。为提供无人驾驶飞机的操作安全有效的计算指导,我们探讨了基于近端政策优化(PPO)的深增强学习算法的使用,以指导自主UA到其目的地,同时通过连续控制避免障碍物。所提出的场景状态表示和奖励功能可以将连续状态空间映射到连续控制,以便进行标题角度和速度。为了验证所提出的学习框架的性能,我们用静态和移动障碍进行了数值实验。详细研究了与环境和安全操作界限的不确定性。结果表明,该拟议的模型可以提供准确且强大的指导,并解决了99%以上的成功率的冲突。
translated by 谷歌翻译
多机器人自适应抽样问题旨在为机器人团队找到轨迹,以有效地对机器人的给定耐力预算中的感兴趣现象进行采样。在本文中,我们使用分散的多代理增强学习来提出一种可靠,可扩展的方法,用于准静态环境过程的合作自适应采样(MARLAS)。鉴于该领域的先验采样,该提议的方法学习了一个机器人团队的分散政策,以在固定预算范围内采样高实现区域。多机器人自适应采样问题要求机器人彼此协调,以避免重叠的采样轨迹。因此,我们编码机器人之间的邻居位置和间歇性通信在学习过程中的估计值。我们评估了Marlas对多个性能指标的评估,发现它的表现优于其他基线多机器人采样技术。我们进一步证明了与机器人团队的大小和所采样区域的大小相对于通信失败和可伸缩性的鲁棒性。实验评估既是对真实数据的模拟,又在演示环境设置的实际机器人实验中进行的。
translated by 谷歌翻译
众所周知,很难拥有一个可靠且强大的框架来将多代理深入强化学习算法与实用的多机器人应用联系起来。为了填补这一空白,我们为称为MultiroBolearn1的多机器人系统提出并构建了一个开源框架。该框架构建了统一的模拟和现实应用程序设置。它旨在提供标准的,易于使用的模拟方案,也可以轻松地将其部署到现实世界中的多机器人环境中。此外,该框架为研究人员提供了一个基准系统,以比较不同的强化学习算法的性能。我们使用不同类型的多代理深钢筋学习算法在离散和连续的动作空间中使用不同类型的多代理深钢筋学习算法来证明框架的通用性,可扩展性和能力。
translated by 谷歌翻译
我们展示了通过大规模多代理端到端增强学习的大射击可转移到真正的四轮压力机的无人驾驶群体控制器的可能性。我们培训由神经网络参数化的政策,该政策能够以完全分散的方式控制群体中的各个无人机。我们的政策,在具有现实的四轮流物理学的模拟环境中训练,展示了先进的植绒行为,在紧张的地层中执行侵略性的操作,同时避免彼此的碰撞,破裂和重新建立地层,以避免与移动障碍的碰撞,并有效地协调追求障碍,并有效地协调追求逃避任务。在模拟中,我们分析了培训制度的不同模型架构和参数影响神经群的最终表现。我们展示了在模拟中学习的模型的成功部署到高度资源受限的物理四体体执行站保持和目标交换行为。在Propers网站上提供代码和视频演示,在https://sites.google.com/view/swarm-rl上获得。
translated by 谷歌翻译
本文介绍了一种可以在非通信和局部可观察条件下应用的新型混合多机器人运动计划。策划员是无模型的,可以实现多机器人状态和观察信息的端到端映射到最终平滑和连续的轨迹。规划师是前端和后端分离的架构。前端协作航点搜索模块的设计基于具有分散执行图的集中培训下的多代理软演员批评算法。后端轨迹优化模块的设计基于具有安全区域约束的最小快照方法。该模块可以输出最终动态可行和可执行的轨迹。最后,多组实验结果验证了拟议的运动计划员的有效性。
translated by 谷歌翻译
Efficient use of the space in an elevator is very necessary for a service robot, due to the need for reducing the amount of time caused by waiting for the next elevator. To provide a solution for this, we propose a hybrid approach that combines reinforcement learning (RL) with voice interaction for robot navigation in the scene of entering the elevator. RL provides robots with a high exploration ability to find a new clear path to enter the elevator compared to traditional navigation methods such as Optimal Reciprocal Collision Avoidance (ORCA). The proposed method allows the robot to take an active clear path action towards the elevator whilst a crowd of people stands at the entrance of the elevator wherein there are still lots of space. This is done by embedding a clear path action (voice prompt) into the RL framework, and the proposed navigation policy helps the robot to finish tasks efficiently and safely. Our model approach provides a great improvement in the success rate and reward of entering the elevator compared to state-of-the-art navigation policies without active clear path operation.
translated by 谷歌翻译
如今,合作多代理系统用于学习如何在大规模动态环境中实现目标。然而,在这些环境中的学习是具有挑战性的:从搜索空间大小对学习时间的影响,代理商之间的低效合作。此外,增强学习算法可能遭受这种环境的长时间的收敛。本文介绍了通信框架。在拟议的沟通框架中,代理商学会有效地合作,同时通过引入新的状态计算方法,状态空间的大小将大大下降。此外,提出了一种知识传输算法以共享不同代理商之间的获得经验,并制定有效的知识融合机制,以融合利用来自其他团队成员所收到的知识的代理商自己的经验。最后,提供了模拟结果以指示所提出的方法在复杂学习任务中的功效。我们已经评估了我们对牧羊化问题的方法,结果表明,通过利用知识转移机制,学习过程加速了,通过基于状态抽象概念产生类似国家的状态空间的大小均下降。
translated by 谷歌翻译
Safe and efficient co-planning of multiple robots in pedestrian participation environments is promising for applications. In this work, a novel multi-robot social-aware efficient cooperative planner that on the basis of off-policy multi-agent reinforcement learning (MARL) under partial dimension-varying observation and imperfect perception conditions is proposed. We adopt temporal-spatial graph (TSG)-based social encoder to better extract the importance of social relation between each robot and the pedestrians in its field of view (FOV). Also, we introduce K-step lookahead reward setting in multi-robot RL framework to avoid aggressive, intrusive, short-sighted, and unnatural motion decisions generated by robots. Moreover, we improve the traditional centralized critic network with multi-head global attention module to better aggregates local observation information among different robots to guide the process of individual policy update. Finally, multi-group experimental results verify the effectiveness of the proposed cooperative motion planner.
translated by 谷歌翻译
流动性和流量的许多方案都涉及多种不同的代理,需要合作以找到共同解决方案。行为计划的最新进展使用强化学习以寻找有效和绩效行为策略。但是,随着自动驾驶汽车和车辆对X通信变得越来越成熟,只有使用单身独立代理的解决方案在道路上留下了潜在的性能增长。多代理增强学习(MARL)是一个研究领域,旨在为彼此相互作用的多种代理找到最佳解决方案。这项工作旨在将该领域的概述介绍给研究人员的自主行动能力。我们首先解释Marl并介绍重要的概念。然后,我们讨论基于Marl算法的主要范式,并概述每个范式中最先进的方法和思想。在这种背景下,我们调查了MAL在自动移动性场景中的应用程序,并概述了现有的场景和实现。
translated by 谷歌翻译
许多现实世界的应用程序都可以作为多机构合作问题进行配置,例如网络数据包路由和自动驾驶汽车的协调。深入增强学习(DRL)的出现为通过代理和环境的相互作用提供了一种有前途的多代理合作方法。但是,在政策搜索过程中,传统的DRL解决方案遭受了多个代理具有连续动作空间的高维度。此外,代理商政策的动态性使训练非平稳。为了解决这些问题,我们建议采用高级决策和低水平的个人控制,以进行有效的政策搜索,提出一种分层增强学习方法。特别是,可以在高级离散的动作空间中有效地学习多个代理的合作。同时,低水平的个人控制可以减少为单格强化学习。除了分层增强学习外,我们还建议对手建模网络在学习过程中对其他代理的政策进行建模。与端到端的DRL方法相反,我们的方法通过以层次结构将整体任务分解为子任务来降低学习的复杂性。为了评估我们的方法的效率,我们在合作车道变更方案中进行了现实世界中的案例研究。模拟和现实世界实验都表明我们的方法在碰撞速度和收敛速度中的优越性。
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
我们为仓库环境中的移动机器人提供基于新颖的强化学习(RL)任务分配和分散的导航算法。我们的方法是针对各种机器人执行各种接送和交付任务的场景而设计的。我们考虑了联合分散任务分配和导航的问题,并提出了解决该问题的两层方法。在更高级别,我们通过根据马尔可夫决策过程制定任务并选择适当的奖励来最大程度地减少总旅行延迟(TTD)来解决任务分配。在较低级别,我们使用基于ORCA的分散导航方案,使每个机器人能够独立执行这些任务,并避免与其他机器人和动态障碍物发生碰撞。我们通过定义较高级别的奖励作为低级导航算法的反馈来结合这些下层和上层。我们在复杂的仓库布局中进行了广泛的评估,并具有大量代理商,并根据近视拾取距离距离最小化和基于遗憾的任务选择,突出了对最先进算法的好处。我们观察到任务完成时间的改善高达14%,并且在计算机器人的无碰撞轨迹方面提高了40%。
translated by 谷歌翻译
我们研究了流行的集中训练和分散执行(CTDE)范式中的多机器人发臭导航问题。当每个机器人考虑其路径而不明确地与其他机器人明确分享观察时,这一问题挑战了,可能导致深度加强学习(DRL)中的非静止问题。典型的CTDE算法将联合动作值函数分解为个别函数,以支持合作并实现分散的执行。这种分解涉及限制(例如,单调性),其限制在个体中的新行为的出现,因为从联合动作值开始训练。相比之下,我们为CTDE提出了一种新颖的架构,该架构使用集中式状态值网络来计算联合状态值,该值用于在代理的基于值的更新中注入全局状态信息。因此,考虑到环境的整体状态,每个模型计算其权重的梯度更新。我们的想法遵循Dueling Networks作为联合状态值的单独估计的独立估计,具有提高采样效率的优点,同时提供每个机器人信息,无论全局状态是否为(或不是)有价值的。具有2 4和8个机器人的机器人导航任务的实验,确认了我们对先前CTDE方法的方法的卓越性能(例如,VDN,QMIX)。
translated by 谷歌翻译
为多个机器人制定安全,稳定和高效的避免障碍政策是具有挑战性的。大多数现有研究要么使用集中控制,要么需要与其他机器人进行通信。在本文中,我们提出了一种基于对数地图的新型对数深度强化学习方法,以避免复杂且无通信的多机器人方案。特别是,我们的方法将激光信息转换为对数图。为了提高训练速度和概括性能,我们的政策将在两个专门设计的多机器人方案中进行培训。与其他方法相比,对数图可以更准确地表示障碍,并提高避免障碍的成功率。我们最终在各种模拟和现实情况下评估了我们的方法。结果表明,我们的方法为复杂的多机器人场景和行人场景中的机器人提供了一种更稳定,更有效的导航解决方案。视频可在https://youtu.be/r0esuxe6mze上找到。
translated by 谷歌翻译
通过直接将感知输入映射到机器人控制命令中,深入的强化学习(DRL)算法已被证明在机器人导航中有效,尤其是在未知环境中。但是,大多数现有方法忽略导航中的局部最小问题,从而无法处理复杂的未知环境。在本文中,我们提出了第一个基于DRL的导航方法,该方法由具有连续动作空间,自适应向前模拟时间(AFST)的SMDP建模,以克服此问题。具体而言,我们通过修改其GAE来更好地估计SMDP中的策略梯度,改善了指定SMDP问题的分布式近端策略优化(DPPO)算法。我们在模拟器和现实世界中评估了我们的方法。
translated by 谷歌翻译
在本文中,我们研究了DRL算法在本地导航问题的应用,其中机器人仅配备有限​​量距离的外部感受传感器(例如LIDAR),在未知和混乱的工作区中朝着目标位置移动。基于DRL的碰撞避免政策具有一些优势,但是一旦他们学习合适的动作的能力仅限于传感器范围,它们就非常容易受到本地最小值的影响。由于大多数机器人在非结构化环境中执行任务,因此寻求能够避免本地最小值的广义本地导航政策,尤其是在未经训练的情况下,这是非常兴趣的。为此,我们提出了一种新颖的奖励功能,该功能结合了在训练阶段获得的地图信息,从而提高了代理商故意最佳行动方案的能力。另外,我们使用SAC算法来训练我们的ANN,这表明在最先进的文献中比其他人更有效。一组SIM到SIM和SIM到现实的实验表明,我们提出的奖励与SAC相结合的表现优于比较局部最小值和避免碰撞的方法。
translated by 谷歌翻译
最先进的多机构增强学习(MARL)方法为各种复杂问题提供了有希望的解决方案。然而,这些方法都假定代理执行同步的原始操作执行,因此它们不能真正可扩展到长期胜利的真实世界多代理/机器人任务,这些任务固有地要求代理/机器人以异步的理由,涉及有关高级动作选择的理由。不同的时间。宏观行动分散的部分可观察到的马尔可夫决策过程(MACDEC-POMDP)是在完全合作的多代理任务中不确定的异步决策的一般形式化。在本论文中,我们首先提出了MacDec-Pomdps的一组基于价值的RL方法,其中允许代理在三个范式中使用宏观成果功能执行异步学习和决策:分散学习和控制,集中学习,集中学习和控制,以及分散执行的集中培训(CTDE)。在上述工作的基础上,我们在三个训练范式下制定了一组基于宏观行动的策略梯度算法,在该训练范式下,允许代理以异步方式直接优化其参数化策略。我们在模拟和真实的机器人中评估了我们的方法。经验结果证明了我们在大型多代理问题中的方法的优势,并验证了我们算法在学习具有宏观actions的高质量和异步溶液方面的有效性。
translated by 谷歌翻译