在本文中,我们研究了DRL算法在本地导航问题的应用,其中机器人仅配备有限​​量距离的外部感受传感器(例如LIDAR),在未知和混乱的工作区中朝着目标位置移动。基于DRL的碰撞避免政策具有一些优势,但是一旦他们学习合适的动作的能力仅限于传感器范围,它们就非常容易受到本地最小值的影响。由于大多数机器人在非结构化环境中执行任务,因此寻求能够避免本地最小值的广义本地导航政策,尤其是在未经训练的情况下,这是非常兴趣的。为此,我们提出了一种新颖的奖励功能,该功能结合了在训练阶段获得的地图信息,从而提高了代理商故意最佳行动方案的能力。另外,我们使用SAC算法来训练我们的ANN,这表明在最先进的文献中比其他人更有效。一组SIM到SIM和SIM到现实的实验表明,我们提出的奖励与SAC相结合的表现优于比较局部最小值和避免碰撞的方法。
translated by 谷歌翻译
深钢筋学习中的确定性和随机技术已成为改善运动控制和各种机器人的决策任务的有前途的解决方案。先前的工作表明,这些深-RL算法通常可以应用于一般的移动机器人的无MAP导航。但是,他们倾向于使用简单的传感策略,因为已经证明它们在高维状态空间(例如基于图像的传感的空间)方面的性能不佳。本文在执行移动机器人无地图导航的任务时,对两种深-RL技术 - 深确定性政策梯度(DDPG)和软参与者(SAC)进行了比较分析。我们的目标是通过展示神经网络体系结构如何影响学习本身的贡献,并根据每种方法的航空移动机器人导航的时间和距离提出定量结果。总体而言,我们对六个不同体系结构的分析强调了随机方法(SAC)更好地使用更深的体系结构,而恰恰相反发生在确定性方法(DDPG)中。
translated by 谷歌翻译
本文介绍了一种新型深度加强基于基于深度加强学习的3D Fapless导航系统(无人机)。我们提出了一个简单的学习系统,而不是使用一种简单的学习系统,该系统仅使用来自距离传感器的一些稀疏范围数据来训练学习代理。我们基于我们对两种最先进的双重评论家深度RL模型的方法:双延迟深度确定性政策梯度(TD3)和软演员 - 评论家(SAC)。我们表明,我们的两种方法可以基于深度确定性政策梯度(DDPG)技术和Bug2算法来胜过一种方法。此外,我们基于经常性神经网络(RNNS)的新的深度RL结构优于用于执行移动机器人的FAPLESS导航的当前结构。总体而言,我们得出结论,基于双重评论评价的深度RL方法与经常性神经网络(RNNS)更适合进行熔化的导航和避免无人机。
translated by 谷歌翻译
在狭窄的空间中,基于传统层次自治系统的运动计划可能会导致映射,定位和控制噪声引起碰撞。此外,当无映射时,它将被禁用。为了解决这些问题,我们利用深厚的加强学习,可以证明可以有效地进行自我决策,从而在狭窄的空间中自探索而无需地图,同时避免碰撞。具体而言,基于我们的Ackermann-Steering矩形Zebrat机器人及其凉亭模拟器,我们建议矩形安全区域来表示状态并检测矩形形状的机器人的碰撞,以及无需精心制作的奖励功能,不需要增强功能。目的地信息。然后,我们在模拟的狭窄轨道中基准了五种增强学习算法,包括DDPG,DQN,SAC,PPO和PPO-DISCRETE。经过训练,良好的DDPG和DQN型号可以转移到三个全新的模拟轨道上,然后转移到三个现实世界中。
translated by 谷歌翻译
我们提出了Covy - 一个机器人平台,可在Covid-19等大流行期间促进社会疏远。Covy具有一种新颖的复合视觉系统,使其能够检测到社会距离的破坏,最多可达16m。Covy使用混合导航堆栈自动地导航其周围环境,该堆栈结合了深钢筋学习(DRL)和概率定位方法。我们通过模拟和现实环境中的大量实验构建了完整的系统并评估了Covy的性能。除其他外,我们的结果表明,与基于DRL的纯解决方案相比,混合导航堆栈更强大。
translated by 谷歌翻译
强化学习(RL)通过原始像素成像和连续的控制任务在视频游戏中表现出了令人印象深刻的表现。但是,RL的性能较差,例如原始像素图像,例如原始像素图像。人们普遍认为,基于物理状态的RL策略(例如激光传感器测量值)比像素学习相比会产生更有效的样品结果。这项工作提出了一种新方法,该方法从深度地图估算中提取信息,以教授RL代理以执行无人机导航(UAV)的无地图导航。我们提出了深度模仿的对比度无监督的优先表示(DEPTH-CUPRL),该表示具有优先重播记忆的估算图像的深度。我们使用RL和对比度学习的组合,根据图像的RL问题引发。从无人驾驶汽车(UAV)对结果的分析中,可以得出结论,我们的深度cuprl方法在无MAP导航能力中对决策和优于最先进的像素的方法有效。
translated by 谷歌翻译
多机器人导航是一项具有挑战性的任务,其中必须在动态环境中同时协调多个机器人。我们应用深入的加固学习(DRL)来学习分散的端到端策略,该政策将原始传感器数据映射到代理的命令速度。为了使政策概括,培训是在不同的环境和场景中进行的。在常见的多机器人场景中测试和评估了学识渊博的政策,例如切换一个地方,交叉路口和瓶颈情况。此策略使代理可以从死端恢复并浏览复杂的环境。
translated by 谷歌翻译
先前的工作表明,深-RL可以应用于无地图导航,包括混合无人驾驶空中水下车辆(Huauvs)的中等过渡。本文介绍了基于最先进的演员批评算法的新方法,以解决Huauv的导航和中型过渡问题。我们表明,具有复发性神经网络的双重评论家Deep-RL可以使用仅范围数据和相对定位来改善Huauvs的导航性能。我们的深-RL方法通过通过不同的模拟场景对学习的扎实概括,实现了更好的导航和过渡能力,表现优于先前的方法。
translated by 谷歌翻译
通过直接将感知输入映射到机器人控制命令中,深入的强化学习(DRL)算法已被证明在机器人导航中有效,尤其是在未知环境中。但是,大多数现有方法忽略导航中的局部最小问题,从而无法处理复杂的未知环境。在本文中,我们提出了第一个基于DRL的导航方法,该方法由具有连续动作空间,自适应向前模拟时间(AFST)的SMDP建模,以克服此问题。具体而言,我们通过修改其GAE来更好地估计SMDP中的策略梯度,改善了指定SMDP问题的分布式近端策略优化(DPPO)算法。我们在模拟器和现实世界中评估了我们的方法。
translated by 谷歌翻译
这项工作调查了基于课程学习(CL)对代理商的绩效的影响。特别是,我们专注于机器人毛美导航的安全方面,比较标准端到端(E2E)培训策略。为此,我们提出了一种方法,即利用学习(tol)和微调在基于团结的模拟中的微调,以及Robotnik Kairos作为机器人代理。对于公平的比较,我们的评估考虑了对每个学习方法的同等计算需求(即,相同的相互作用和环境的难度数),并确认我们基于CL的方法使用TOL优于E2E方法。特别是,我们提高了培训的政策的平均成功率和安全,导致看不见的测试方案中的碰撞减少了10%。为了进一步确认这些结果,我们采用正式的验证工具来量化加强学习政策的正确行为数量超过所需规范。
translated by 谷歌翻译
尽管数十年的努力,但在真正的情景中的机器人导航具有波动性,不确定性,复杂性和歧义(vuca短暂),仍然是一个具有挑战性的话题。受到中枢神经系统(CNS)的启发,我们提出了一个在Vuca环境中的自主导航的分层多专家学习框架。通过考虑目标位置,路径成本和安全水平的启发式探索机制,上层执行同时映射探索和路线规划,以避免陷入盲巷,类似于CNS中的大脑。使用本地自适应模型融合多种差异策略,下层追求碰撞 - 避免和直接策略之间的平衡,作为CNS中的小脑。我们在多个平台上进行仿真和实际实验,包括腿部和轮式机器人。实验结果表明我们的算法在任务成就,时间效率和安全性方面优于现有方法。
translated by 谷歌翻译
本文提出了一种基于强化学习的导航方法,在其中我们将占用观测定义为运动原始启发式评估,而不是使用原始传感器数据。我们的方法可以将多传感器融合生成的占用数据快速映射到3D工作区中的轨迹值中。计算有效的轨迹评估允许对动作空间进行密集采样。我们利用不同数据结构中的占用观测来分析其对培训过程和导航性能的影响。我们在基于物理的仿真环境(包括静态和动态障碍)中对两个不同机器人进行训练和测试。我们通过最先进方法的其他常规数据结构对我们的占用表示进行基准测试。在动态环境中,通过物理机器人成功验证了训练有素的导航政策。结果表明,与其他占用表示相比,我们的方法不仅减少了所需的训练时间,还可以改善导航性能。我们的工作和所有相关信息的开源实现可从\ url {https://github.com/river-lab/tentabot}获得。
translated by 谷歌翻译
本文研究了如何改善接受深入增强学习训练的导航剂的概括性能和学习速度(DRL)。尽管DRL在无机MAP导航中表现出巨大的潜力,但在训练场景中表现良好的DRL代理在不熟悉的情况下经常表现不佳。在这项工作中,我们建议LIDAR读数的表示是代理商效果退化的关键因素,并提出了一种强大的输入预处理(IP)方法来解决此问题。由于这种方法使用适应性的参数倒数函数来预处理激光雷达读数,因此我们将此方法称为IPAPREC及其归一化版本为IPAPRECN。 IPAPREC/IPAPRECN可以突出显示重要的短距离值,并压缩激光扫描中较重要的长距离值的范围,该值很好地解决了由激光扫描的常规表示引起的问题。通过广泛的模拟和现实世界实验来验证它们的高性能。结果表明,与常规方法相比,我们的方法可以大大改善导航剂的概括性能,并大大减少训练时间。
translated by 谷歌翻译
我们提出了一种新颖的户外导航算法,以生成稳定,有效的动作,以将机器人导航到目标。我们使用多阶段的训练管道,并表明我们的模型产生了政策,从而在复杂的地形上导致稳定且可靠的机器人导航。基于近端政策优化(PPO)算法,我们开发了一种新颖的方法来实现户外导航任务的多种功能,即:减轻机器人的漂移,使机器人在颠簸的地形上保持稳定,避免在山丘上攀登,并具有陡峭的山坡,并改变了山坡,并保持了陡峭的高度变化,并使机器人稳定在山坡上,并避免了攀岩地面上的攀登,并避免了机器人的攀岩地形,并避免了机器人的攀岩地形。避免碰撞。我们的培训过程通过引入更广泛的环境和机器人参数以及统一模拟器中LIDAR感知的丰富特征来减轻现实(SIM到现实)差距。我们使用Clearphith Husky和Jackal在模拟和现实世界中评估我们的方法。此外,我们将我们的方法与最先进的方法进行了比较,并表明在现实世界中,它在不平坦的地形上至少提高了30.7%通过防止机器人在高梯度的区域移动,机器人在每个运动步骤处的高程变化。
translated by 谷歌翻译
深度强化学习在基于激光的碰撞避免有效的情况下取得了巨大的成功,因为激光器可以感觉到准确的深度信息而无需太多冗余数据,这可以在算法从模拟环境迁移到现实世界时保持算法的稳健性。但是,高成本激光设备不仅很难为大型机器人部署,而且还表现出对复杂障碍的鲁棒性,包括不规则的障碍,例如桌子,桌子,椅子和架子,以及复杂的地面和特殊材料。在本文中,我们提出了一个新型的基于单眼相机的复杂障碍避免框架。特别是,我们创新地将捕获的RGB图像转换为伪激光测量,以进行有效的深度强化学习。与在一定高度捕获的传统激光测量相比,仅包含距离附近障碍的一维距离信息,我们提议的伪激光测量融合了捕获的RGB图像的深度和语义信息,这使我们的方法有效地有效障碍。我们还设计了一个功能提取引导模块,以加重输入伪激光测量,并且代理对当前状态具有更合理的关注,这有利于提高障碍避免政策的准确性和效率。
translated by 谷歌翻译
Underwater navigation presents several challenges, including unstructured unknown environments, lack of reliable localization systems (e.g., GPS), and poor visibility. Furthermore, good-quality obstacle detection sensors for underwater robots are scant and costly; and many sensors like RGB-D cameras and LiDAR only work in-air. To enable reliable mapless underwater navigation despite these challenges, we propose a low-cost end-to-end navigation system, based on a monocular camera and a fixed single-beam echo-sounder, that efficiently navigates an underwater robot to waypoints while avoiding nearby obstacles. Our proposed method is based on Proximal Policy Optimization (PPO), which takes as input current relative goal information, estimated depth images, echo-sounder readings, and previous executed actions, and outputs 3D robot actions in a normalized scale. End-to-end training was done in simulation, where we adopted domain randomization (varying underwater conditions and visibility) to learn a robust policy against noise and changes in visibility conditions. The experiments in simulation and real-world demonstrated that our proposed method is successful and resilient in navigating a low-cost underwater robot in unknown underwater environments. The implementation is made publicly available at https://github.com/dartmouthrobotics/deeprl-uw-robot-navigation.
translated by 谷歌翻译
我们提出了一种新的方法,以改善基于深入强化学习(DRL)的室外机器人导航系统的性能。大多数现有的DRL方法基于精心设计的密集奖励功能,这些功能可以学习环境中的有效行为。我们仅通过稀疏的奖励(易于设计)来解决这个问题,并提出了一种新颖的自适应重尾增强算法,用于户外导航,称为Htron。我们的主要思想是利用重尾政策参数化,这些参数隐含在稀疏的奖励环境中引起探索。我们在三种不同的室外场景中评估了针对钢琴,PPO和TRPO算法的htron的性能:进球,避免障碍和地形导航不均匀。我们平均观察到成功率的平均增加了34.41%,与其他方法相比,与其他方法获得的导航政策相比,为达到目标的平均时间步骤下降了15.15%,高程成本下降了24.9%。此外,我们证明我们的算法可以直接转移到Clearpath Husky机器人中,以在现实情况下进行户外地形导航。
translated by 谷歌翻译
精确农业正在迅速吸引研究,以有效地引入自动化和机器人解决方案,以支持农业活动。葡萄园和果园中的机器人导航在自主监控方面具有竞争优势,并轻松获取农作物来收集,喷涂和执行时必的耗时必要任务。如今,自主导航算法利用了昂贵的传感器,这也需要大量的数据处理计算成本。尽管如此,葡萄园行代表了一个具有挑战性的户外场景,在这种情况下,GPS和视觉进程技术通常难以提供可靠的定位信息。在这项工作中,我们将Edge AI与深度强化学习相结合,以提出一种尖端的轻质解决方案,以解决自主葡萄园导航的问题,而无需利用精确的本地化数据并通过基于灵活的学习方法来克服任务列出的算法。我们训练端到端的感觉运动剂,该端机直接映射嘈杂的深度图像和位置不可稳定的机器人状态信息到速度命令,并将机器人引导到一排的尽头,不断调整其标题以进行无碰撞的无碰撞中央轨迹。我们在现实的模拟葡萄园中进行的广泛实验证明了解决方案的有效性和代理的概括能力。
translated by 谷歌翻译
为多个机器人制定安全,稳定和高效的避免障碍政策是具有挑战性的。大多数现有研究要么使用集中控制,要么需要与其他机器人进行通信。在本文中,我们提出了一种基于对数地图的新型对数深度强化学习方法,以避免复杂且无通信的多机器人方案。特别是,我们的方法将激光信息转换为对数图。为了提高训练速度和概括性能,我们的政策将在两个专门设计的多机器人方案中进行培训。与其他方法相比,对数图可以更准确地表示障碍,并提高避免障碍的成功率。我们最终在各种模拟和现实情况下评估了我们的方法。结果表明,我们的方法为复杂的多机器人场景和行人场景中的机器人提供了一种更稳定,更有效的导航解决方案。视频可在https://youtu.be/r0esuxe6mze上找到。
translated by 谷歌翻译
Robot assistants are emerging as high-tech solutions to support people in everyday life. Following and assisting the user in the domestic environment requires flexible mobility to safely move in cluttered spaces. We introduce a new approach to person following for assistance and monitoring. Our methodology exploits an omnidirectional robotic platform to detach the computation of linear and angular velocities and navigate within the domestic environment without losing track of the assisted person. While linear velocities are managed by a conventional Dynamic Window Approach (DWA) local planner, we trained a Deep Reinforcement Learning (DRL) agent to predict optimized angular velocities commands and maintain the orientation of the robot towards the user. We evaluate our navigation system on a real omnidirectional platform in various indoor scenarios, demonstrating the competitive advantage of our solution compared to a standard differential steering following.
translated by 谷歌翻译