多机器人自适应抽样问题旨在为机器人团队找到轨迹,以有效地对机器人的给定耐力预算中的感兴趣现象进行采样。在本文中,我们使用分散的多代理增强学习来提出一种可靠,可扩展的方法,用于准静态环境过程的合作自适应采样(MARLAS)。鉴于该领域的先验采样,该提议的方法学习了一个机器人团队的分散政策,以在固定预算范围内采样高实现区域。多机器人自适应采样问题要求机器人彼此协调,以避免重叠的采样轨迹。因此,我们编码机器人之间的邻居位置和间歇性通信在学习过程中的估计值。我们评估了Marlas对多个性能指标的评估,发现它的表现优于其他基线多机器人采样技术。我们进一步证明了与机器人团队的大小和所采样区域的大小相对于通信失败和可伸缩性的鲁棒性。实验评估既是对真实数据的模拟,又在演示环境设置的实际机器人实验中进行的。
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
多机器人系统(MRS)是一组协调的机器人,旨在相互合作并完成给定的任务。由于操作环境中的不确定性,该系统可能会遇到紧急情况,例如未观察到的障碍物,移动车辆和极端天气。蜂群等动物群体会引发集体紧急反应行为,例如绕过障碍和避免掠食者,类似于肌肉条件的反射,该反射组织局部肌肉以避免在第一反应中避免危害,而不会延迟通过大脑的危害。受此启发,我们开发了一种类似的集体反射机制,以使多机器人系统应对紧急情况。在这项研究中,基于动物集体行为分析和多代理增强学习(MARL),开发了一种由生物启发的紧急反应机制(MARL)开发的集体条件反射(CCR)。该算法使用物理模型来确定机器人是否经历了紧急情况。然后,通过相应的启发式奖励增强了涉及紧急情况的机器人的奖励,该奖励评估紧急情况和后果并决定当地机器人的参与。 CCR在三个典型的紧急情况下进行了验证:\ textit {湍流,强风和隐藏障碍物}。仿真结果表明,与基线方法相比,CCR以更快的反应速度和更安全的轨迹调整来提高机器人团队的紧急反应能力。
translated by 谷歌翻译
最先进的多机构增强学习(MARL)方法为各种复杂问题提供了有希望的解决方案。然而,这些方法都假定代理执行同步的原始操作执行,因此它们不能真正可扩展到长期胜利的真实世界多代理/机器人任务,这些任务固有地要求代理/机器人以异步的理由,涉及有关高级动作选择的理由。不同的时间。宏观行动分散的部分可观察到的马尔可夫决策过程(MACDEC-POMDP)是在完全合作的多代理任务中不确定的异步决策的一般形式化。在本论文中,我们首先提出了MacDec-Pomdps的一组基于价值的RL方法,其中允许代理在三个范式中使用宏观成果功能执行异步学习和决策:分散学习和控制,集中学习,集中学习和控制,以及分散执行的集中培训(CTDE)。在上述工作的基础上,我们在三个训练范式下制定了一组基于宏观行动的策略梯度算法,在该训练范式下,允许代理以异步方式直接优化其参数化策略。我们在模拟和真实的机器人中评估了我们的方法。经验结果证明了我们在大型多代理问题中的方法的优势,并验证了我们算法在学习具有宏观actions的高质量和异步溶液方面的有效性。
translated by 谷歌翻译
我们为仓库环境中的移动机器人提供基于新颖的强化学习(RL)任务分配和分散的导航算法。我们的方法是针对各种机器人执行各种接送和交付任务的场景而设计的。我们考虑了联合分散任务分配和导航的问题,并提出了解决该问题的两层方法。在更高级别,我们通过根据马尔可夫决策过程制定任务并选择适当的奖励来最大程度地减少总旅行延迟(TTD)来解决任务分配。在较低级别,我们使用基于ORCA的分散导航方案,使每个机器人能够独立执行这些任务,并避免与其他机器人和动态障碍物发生碰撞。我们通过定义较高级别的奖励作为低级导航算法的反馈来结合这些下层和上层。我们在复杂的仓库布局中进行了广泛的评估,并具有大量代理商,并根据近视拾取距离距离最小化和基于遗憾的任务选择,突出了对最先进算法的好处。我们观察到任务完成时间的改善高达14%,并且在计算机器人的无碰撞轨迹方面提高了40%。
translated by 谷歌翻译
我们开发了一个多功能辅助救援学习(MARL)方法,以了解目标跟踪的可扩展控制策略。我们的方法可以处理任意数量的追求者和目标;我们显示出现的任务,该任务包括高达1000追踪跟踪1000个目标。我们使用分散的部分可观察的马尔可夫决策过程框架来模拟追求者作为接受偏见观察(范围和轴承)的代理,了解使用固定的未知政策的目标。注意机制用于参数化代理的价值函数;这种机制允许我们处理任意数量的目标。熵 - 正规的脱助政策RL方法用于培训随机政策,我们讨论如何在追求者之间实现对冲行为,尽管有完全分散的控制执行,但仍然导致合作较弱的合作形式。我们进一步开发了一个掩蔽启发式,允许训练较少的问题,少量追求目标和在更大的问题上执行。进行彻底的仿真实验,消融研究和对现有技术算法的比较,以研究对不同数量的代理和目标性能的方法和鲁棒性的可扩展性。
translated by 谷歌翻译
在移动机器人学中,区域勘探和覆盖率是关键能力。在大多数可用研究中,共同的假设是全球性,远程通信和集中合作。本文提出了一种新的基于群的覆盖控制算法,可以放松这些假设。该算法组合了两个元素:Swarm规则和前沿搜索算法。受到大量简单代理(例如,教育鱼,植绒鸟类,蜂拥昆虫)的自然系统的启发,第一元素使用三个简单的规则来以分布式方式维持群体形成。第二元素提供了选择有希望区域以使用涉及代理的相对位置的成本函数的最小化来探索(和覆盖)的装置。我们在不同环境中测试了我们的方法对异质和同质移动机器人的性能。我们衡量覆盖性能和允许本集团维持沟通的覆盖性能和群体形成统计数据。通过一系列比较实验,我们展示了拟议的策略在最近提出的地图覆盖方法和传统的人工潜在领域基于细胞覆盖,转变和安全路径的百分比,同时保持允许短程的形成沟通。
translated by 谷歌翻译
了解来自群体中集体行为的分散性动态对于通知人工群和多态机械系统中的机器人控制器设计至关重要。然而,代理人与代理人的相互作用和大多数群体的分散性质对来自全球行为的单机器人控制法的提取构成重大挑战。在这项工作中,我们考虑完全基于群体轨迹的国家观察学习分散单机器人控制器的重要任务。我们通过采用基于知识的神经常规方程(KNODE)来提出一般框架 - 一种能够将人工神经网络与已知代理动态组合的混合机学习方法。我们的方法与大多数事先有关的方法区分,因为我们不需要学习的行动数据。我们分别在2D和3D中将框架应用于两个不同的植绒群,并通过利用群体信息网络的图形结构来展示有效的培训。我们进一步表明,学习的单机器人控制器不仅可以重现原始群体中的植绒行为,而且还可以使用更多机器人来扩展到群体。
translated by 谷歌翻译
对于大规模的大规模任务,多机器人系统(MRS)可以通过利用每个机器人的不同功能,移动性和功能来有效提高效率。在本文中,我们关注大规模平面区域的多机器人覆盖路径计划(MCPP)问题,在机器人资源有限的环境中具有随机的动态干扰。我们介绍了一个工人站MR,由多名工人组成,实际上有有限的实际工作资源,一个站点提供了足够的资源来补充资源。我们旨在通过将其作为完全合作的多代理增强学习问题来解决工人站MRS的MCPP问题。然后,我们提出了一种端到端分散的在线计划方法,该方法同时解决了工人的覆盖范围计划,并为车站的集合计划。我们的方法设法减少随机动态干扰对计划的影响,而机器人可以避免与它们发生冲突。我们进行仿真和真实的机器人实验,比较结果表明,我们的方法在解决任务完成时间指标的MCPP问题方面具有竞争性能。
translated by 谷歌翻译
我们展示了通过大规模多代理端到端增强学习的大射击可转移到真正的四轮压力机的无人驾驶群体控制器的可能性。我们培训由神经网络参数化的政策,该政策能够以完全分散的方式控制群体中的各个无人机。我们的政策,在具有现实的四轮流物理学的模拟环境中训练,展示了先进的植绒行为,在紧张的地层中执行侵略性的操作,同时避免彼此的碰撞,破裂和重新建立地层,以避免与移动障碍的碰撞,并有效地协调追求障碍,并有效地协调追求逃避任务。在模拟中,我们分析了培训制度的不同模型架构和参数影响神经群的最终表现。我们展示了在模拟中学习的模型的成功部署到高度资源受限的物理四体体执行站保持和目标交换行为。在Propers网站上提供代码和视频演示,在https://sites.google.com/view/swarm-rl上获得。
translated by 谷歌翻译
本文解决了多机器人主动信息采集(AIA)问题,其中一组移动机器人通过基础图进行通信,估计一个表达感兴趣现象的隐藏状态。可以在此框架中表达诸如目标跟踪,覆盖范围和大满贯之类的应用程序。但是,现有的方法要么是不可扩展的,因此无法处理动态现象,或者对通信图中的变化不健全。为了应对这些缺点,我们提出了一个信息感知的图形块网络(I-GBNET),即图形神经网络的AIA适应,该网络将信息通过图表表示,并以分布式方式提供顺序决定。通过基于集中抽样的专家求解器训练通过模仿学习训练的I-GBNET表现出置换量比和时间不变性,同时利用了对以前看不见的环境和机器人配置的卓越可扩展性,鲁棒性和概括性。与训练中看到的相比,隐藏状态和更复杂的环境的实验和更复杂的环境实验验证了所提出的体系结构的特性及其在应用定位和动态目标的应用中的功效。
translated by 谷歌翻译
在本文中,我们为具有异质传感器的机器人团队提供了在线自适应计划策略,以使用学习的模型进行决策模型从潜在空间领域进行采样。当前的机器人抽样方法试图收集有关可观察到的空间场的信息。但是,许多应用程序,例如环境监测和精确农业,都涉及不直接观察或衡量昂贵的现象,称为潜在现象。在我们的方法中,我们试图通过使用具有异质传感器的机器人团队有效地采样可观察到的空间场来实时推理潜在现象,在这种空间场中,每个机器人都有一个独特的传感器来测量不同可观察的场。信息增益是使用从可观察到的空间场映射到潜在现象的学习模型来估计的。该模型捕获了关系中的不确定性,以允许信息理论措施。此外,我们明确考虑可观察到的空间场之间的相关性,从而捕获了观察结果并非独立的传感器类型之间的关系。我们表明,可以学习这些相关性,并研究学习相关模型对我们采样方法性能的影响。通过我们的定性和定量结果,我们说明了经验学习的相关性提高了团队的整体抽样效率。我们使用在魁北克的Lac Hertel上收集的传感器测量数据集模拟我们的方法,我们可以公开使用。
translated by 谷歌翻译
主动同时定位和映射(SLAM)是规划和控制机器人运动以构建周围环境中最准确,最完整的模型的问题。自从三十多年前出现了积极感知的第一项基础工作以来,该领域在不同科学社区中受到了越来越多的关注。这带来了许多不同的方法和表述,并回顾了当前趋势,对于新的和经验丰富的研究人员来说都是非常有价值的。在这项工作中,我们在主动大满贯中调查了最先进的工作,并深入研究了仍然需要注意的公开挑战以满足现代应用程序的需求。为了实现现实世界的部署。在提供了历史观点之后,我们提出了一个统一的问题制定并审查经典解决方案方案,该方案将问题分解为三个阶段,以识别,选择和执行潜在的导航措施。然后,我们分析替代方法,包括基于深入强化学习的信念空间规划和现代技术,以及审查有关多机器人协调的相关工作。该手稿以讨论新的研究方向的讨论,解决可再现的研究,主动的空间感知和实际应用,以及其他主题。
translated by 谷歌翻译
Safe and efficient co-planning of multiple robots in pedestrian participation environments is promising for applications. In this work, a novel multi-robot social-aware efficient cooperative planner that on the basis of off-policy multi-agent reinforcement learning (MARL) under partial dimension-varying observation and imperfect perception conditions is proposed. We adopt temporal-spatial graph (TSG)-based social encoder to better extract the importance of social relation between each robot and the pedestrians in its field of view (FOV). Also, we introduce K-step lookahead reward setting in multi-robot RL framework to avoid aggressive, intrusive, short-sighted, and unnatural motion decisions generated by robots. Moreover, we improve the traditional centralized critic network with multi-head global attention module to better aggregates local observation information among different robots to guide the process of individual policy update. Finally, multi-group experimental results verify the effectiveness of the proposed cooperative motion planner.
translated by 谷歌翻译
近年来,研究人员委托机器人和无人驾驶汽车(UAV)团队委托进行准确的在线野火覆盖范围和跟踪。迄今为止,大多数先前的工作都集中在此类多机器人系统的协调和控制上,但尚未赋予这些无人机团队对火的轨道(即位置和传播动态)进行推理的能力,以提供性能保证时间范围。在空中野火监测的问题上,我们提出了一个预测框架,该框架使多UAV团队的合作能够与概率性能保证一起进行协作现场覆盖和火灾跟踪。我们的方法使无人机能够推断出潜在的火灾传播动态,以在安全至关重要的条件下进行时间扩展的协调。我们得出了一组新颖的,分析的时间和跟踪纠纷界限,以使无人机团队根据特定于案例的估计状态分发有限的资源并覆盖整个火灾区域,并提供概率性能保证。我们的结果不仅限于空中野火监测案例研究,而且通常适用于搜索和救援,目标跟踪和边境巡逻等问题。我们在模拟中评估了我们的方法,并在物理多机器人测试台上提供了建议的框架,以说明真实的机器人动态和限制。我们的定量评估验证了我们的方法的性能,分别比基于最新的模型和强化学习基准分别累积了7.5倍和9.0倍的跟踪误差。
translated by 谷歌翻译
本文提出了一种以完全分布式方式工作的协同环境学习算法。多机器人系统比单个机器人更有效,但它涉及以下挑战:1)使用多个机器人在线分布式学习环境地图; 2)基于学习地图的安全和有效的探索路径的产生; 3)对机器人数量的维持能力。为此,我们将整个过程划分为环境学习和路径规划的两个阶段。在每个阶段应用分布式算法并通过相邻机器人之间的通信组合。环境学习算法使用分布式高斯过程,路径规划算法使用分布式蒙特卡罗树搜索。因此,我们构建一个可扩展系统,而无需对机器人数量的约束。仿真结果证明了所提出的系统的性能和可扩展性。此外,基于实际数据集的仿真验证了我们算法在更现实的方案中的实用程序。
translated by 谷歌翻译
在过去的几十年中,多机构增强学习(MARL)一直在学术界和行业受到广泛关注。 MAL中的基本问题之一是如何全面评估不同的方法。在视频游戏或简单的模拟场景中评估了大多数现有的MAL方法。这些方法在实际情况下,尤其是多机器人系统中的性能仍然未知。本文介绍了一个可扩展的仿真平台,用于多机器人增强学习(MRRL),称为SMART,以满足这一需求。确切地说,智能由两个组成部分组成:1)一个模拟环境,该环境为培训提供了各种复杂的交互场景,以及2)现实世界中的多机器人系统,用于现实的性能评估。此外,SMART提供了代理环境API,这些API是算法实现的插件。为了说明我们平台的实用性,我们就合作驾驶车道变更方案进行了案例研究。在案例研究的基础上,我们总结了MRRL的一些独特挑战,这些挑战很少被考虑。最后,我们为鼓励和增强MRRL研究的仿真环境,相关的基准任务和最先进的基线开放。
translated by 谷歌翻译
多机器人覆盖计划问题的集中式方法缺乏可扩展性。基于学习的分布式算法除了将面向数据的功能生成功能带入表格外,还提供了可扩展的途径,从而允许与其他基于学习的方法集成。为此,我们提出了一个基于学习的,可区分的分布式覆盖范围计划(D2COPL A N),该计划者与专家算法相比在运行时和代理数量上有效地扩展,并与经典分布式算法相同。此外,我们表明D2Coplan可以与其他学习方法无缝地结合到端到端的学习方法,从而提供了比单独训练的模块更好的解决方案,从而打开了进一步的研究,以进一步研究以经典方法难以捉摸的任务。
translated by 谷歌翻译
尽管空间限制对代理的性能产生了明显的影响,但多代理导航算法设计的传统方法将环境视为固定的限制。然而,手动设计改进的环境布局和结构效率低下且可能昂贵。本文的目的是将环境视为系统级优化问题中的决策变量,在该问题中,代理性能和环境成本都可以考虑到。我们首先提出一个新颖的环境优化问题。我们通过正式证明在哪些条件下显示环境可以改变的同时保证完整性(即所有代理达到其导航目标)。我们的解决方案利用了一种无模型的增强学习方法。为了适应广泛的实施方案,我们包括在线和离线优化,以及离散和连续的环境表示。数值结果证实了我们的理论发现并验证了我们的方法。
translated by 谷歌翻译
大型人口系统的分析和控制对研究和工程的各个领域引起了极大的兴趣,从机器人群的流行病学到经济学和金融。一种越来越流行和有效的方法来实现多代理系统中的顺序决策,这是通过多机构增强学习,因为它允许对高度复杂的系统进行自动和无模型的分析。但是,可伸缩性的关键问题使控制和增强学习算法的设计变得复杂,尤其是在具有大量代理的系统中。尽管强化学习在许多情况下都发现了经验成功,但许多代理商的问题很快就变得棘手了,需要特别考虑。在这项调查中,我们将阐明当前的方法,以通过多代理强化学习以及通过诸如平均场游戏,集体智能或复杂的网络理论等研究领域进行仔细理解和分析大型人口系统。这些经典独立的主题领域提供了多种理解或建模大型人口系统的方法,这可能非常适合将来的可拖动MARL算法制定。最后,我们调查了大规模控制的潜在应用领域,并确定了实用系统中学习算法的富有成果的未来应用。我们希望我们的调查可以为理论和应用科学的初级和高级研究人员提供洞察力和未来的方向。
translated by 谷歌翻译