We discuss pattern languages for closed pattern mining and learning of interval data and distributional data. We first introduce pattern languages relying on pairs of intersection-based constraints or pairs of inclusion based constraints, or both, applied to intervals. We discuss the encoding of such interval patterns as itemsets thus allowing to use closed itemsets mining and formal concept analysis programs. We experiment these languages on clustering and supervised learning tasks. Then we show how to extend the approach to address distributional data.
translated by 谷歌翻译
形状约束语言(SHACL)是通过验证图表上的某些形状来验证RDF数据的最新W3C推荐语言。先前的工作主要集中在验证问题上,并且仅针对SHACL的简化版本研究了对设计和优化目的至关重要的可满足性和遏制的标准决策问题。此外,SHACL规范不能定义递归定义的约束的语义,这导致文献中提出了几种替代性递归语义。尚未研究这些不同语义与重要决策问题之间的相互作用。在本文中,我们通过向新的一阶语言(称为SCL)的翻译提供了对SHACL的不同特征的全面研究,该语言精确地捕获了SHACL的语义。我们还提出了MSCL,这是SCL的二阶扩展,它使我们能够在单个形式的逻辑框架中定义SHACL的主要递归语义。在这种语言中,我们还提供了对过滤器约束的有效处理,这些滤镜经常在相关文献中被忽略。使用此逻辑,我们为不同的SHACL片段的可满足性和遏制决策问题提供了(联合)可决定性和复杂性结果的详细图。值得注意的是,我们证明这两个问题对于完整的语言都是不可避免的,但是即使面对递归,我们也提供了有趣的功能的可决定性组合。
translated by 谷歌翻译
我们提出了一种估计具有标称分类数据的高维线性模型的方法。我们的估算器,称为范围,通过使其相应的系数完全相等来融合水平。这是通过对分类变量的系数的阶数统计之间的差异之间的差异来实现这一点,从而聚类系数。我们提供了一种算法,用于精确和有效地计算在具有潜在许多级别的单个变量的情况下的总体上的最小值的全局最小值,并且在多变量情况下在块坐标血管下降过程中使用它。我们表明,利用未知级别融合的Oracle最小二乘解决方案是具有高概率的坐标血缘的极限点,只要真正的级别具有一定的最小分离;已知这些条件在单变量案例中最小。我们展示了在一系列实际和模拟数据集中的范围的有利性能。 R包的R包Catreg实现线性模型的范围,也可以在CRAN上提供逻辑回归的版本。
translated by 谷歌翻译
Approximation fixpoint theory (AFT) is an abstract and general algebraic framework for studying the semantics of nonmonotonic logics. It provides a unifying study of the semantics of different formalisms for nonmonotonic reasoning, such as logic programming, default logic and autoepistemic logic. In this paper, we extend AFT to dealing with non-deterministic constructs that allow to handle indefinite information, represented e.g. by disjunctive formulas. This is done by generalizing the main constructions and corresponding results of AFT to non-deterministic operators, whose ranges are sets of elements rather than single elements. The applicability and usefulness of this generalization is illustrated in the context of disjunctive logic programming.
translated by 谷歌翻译
我们概述了在其知识表示和声明问题解决的应用中的视角下的时间逻辑编程。这些程序是将通常规则与时间模态运算符组合的结果,如线性时间时间逻辑(LTL)。我们专注于最近的非单调形式主义的结果​​称为时间平衡逻辑(电话),该逻辑(电话)为LTL的全语法定义,但是基于平衡逻辑执行模型选择标准,答案集编程的众所周知的逻辑表征(ASP )。我们获得了稳定模型语义的适当延伸,以进行任意时间公式的一般情况。我们记得电话和单调基础的基本定义,这里的时间逻辑 - 和那里(THT),并研究无限和有限迹线之间的差异。我们还提供其他有用的结果,例如将转换成其他形式主义,如量化的平衡逻辑或二阶LTL,以及用于基于自动机计算的时间稳定模型的一些技术。在第二部分中,我们专注于实际方面,定义称为较近ASP的时间逻辑程序的句法片段,并解释如何在求解器Telingo的构建中被利用。
translated by 谷歌翻译
我们在答案集编程(ASP)中,提供了全面的可变实例化或接地的理论基础。在ASP的建模语言的语义上构建,我们在(固定点)运营商方面介绍了接地算法的正式表征。专用良好的运营商扮演了一个主要作用,其相关模型提供了划定接地结果以及随机简化的语义指导。我们地址呈现出一种竞技级逻辑程序,该程序包含递归聚合,从而达到现有ASP建模语言的范围。这伴随着一个普通算法框架,详细说明递归聚集体的接地。给定的算法基本上对应于ASP接地器Gringo中使用的算法。
translated by 谷歌翻译
当在条件属性上以某种方式相关的实例时,发生预测问题的不一致不会遵循决策属性的相同关系。例如,在具有单调性约束的序数分类中,当在条件属性上占据另一个实例的实例已经分配给更糟糕的决策类时,会发生它。它通常出现在由不完全知识(缺少属性)或通过数据生成期间发生的随机效果引起的数据的扰动(在决策属性值的评估中的不稳定性)引起的数据中的扰动。可以使用符号方法如粗糙集理论等象征方法处理和涉及优化方法的统计/机器学习方法,处理相对于清晰的预购关系(表达实例之间的差异或实例之间的无漏能格)不一致。模糊粗糙集也可以被视为对模糊关系处理不一致的象征性方法。在本文中,我们介绍了一种新的机器学习方法,用于对模糊预订关系进行不一致处理。新颖的方法是由用于清脆关系的现有机器学习方法的激励。我们为IT提供统计基础,并开发可用于消除不一致的优化程序。本文还证明了重要的财产,并载有这些程序的教学例子。
translated by 谷歌翻译
在我们生活在深厚的互连世界中,我们周围的各个信息链接域。由于图形数据库包含了数据之间有效的关系,并允许处理和查询这些连接,因此它们正迅速成为支持广泛域和应用程序的流行平台。与关系情况一样,可以预期数据保留了一组完整性约束,这些限制定义了它代表的世界的语义结构。当数据库不满足其完整性约束时,一种可能的方法是搜索确实满足约束(也称为维修)的“类似”数据库。在这项工作中,我们使用基于一组Reg-GXPath表达式作为完整性约束的一致性概念来研究图形数据库的计算子集和超集修复的问题。我们表明,对于Reg-GxPath的积极片段,这些问题承认了多项式时间算法,而语言的全部表达力使它们棘手。
translated by 谷歌翻译
数据最初是由Peter Hammer引入的,对数据的逻辑分析是一种方法,旨在计算逻辑上的理由,以将一组数据划分为两组观测值,通常称为正和负基。将此分区视为对部分定义的布尔函数的描述;然后处理数据以识别属性的子集,其值可用于表征正组对负基组的观测值。 LAD构成了经典统计学习技术的一种有趣的基于规则的学习替代方案,并具有许多实际应用。然而,根据数据实例的属性,组表征的计算可能是昂贵的。我们工作的一个主要目的是通过计算一些给定属性确实表征正组和负面组来提供一些\ emph {先验}的概率来提供有效的工具来加速计算。为此,我们根据我们对其上的信息提出了几种代表观测数据集的模型。这些模型及其允许我们计算的概率也有助于快速评估当前实际数据的某些属性;此外,它们可以帮助我们更好地分析和理解解决方法所遇到的计算困难。一旦建立了模型,计算概率的数学工具就会来自分析组合。它们使我们能够将所需的概率表示为生成函数系数的比率,然后提供其数值的快速计算。本文的另一个远程目标是表明,分析组合学的方法可以帮助分析LAD和相关领域中各种算法的性能。
translated by 谷歌翻译
我们介绍了强大的子组发现的问题,即,找到一个关于一个或多个目标属性的脱颖而出的子集的一组可解释的描述,2)是统计上的鲁棒,并且3)非冗余。许多尝试已经挖掘了局部强壮的子组或解决模式爆炸,但我们是第一个从全球建模角度同时解决这两个挑战的爆炸。首先,我们制定广泛的模型类别的子组列表,即订购的子组,可以组成的单次组和多变量目标,该目标可以由标称或数字变量组成,并且包括其定义中的传统Top-1子组发现。这种新颖的模型类允许我们使用最小描述长度(MDL)原理来形式地形化最佳强大的子组发现,在那里我们分别为标称和数字目标的最佳归一化最大可能性和贝叶斯编码而度假。其次,正如查找最佳子组列表都是NP-Hard,我们提出了SSD ++,一个贪婪的启发式,找到了很好的子组列表,并保证了根据MDL标准的最重要的子组在每次迭代中添加,这被显示为等同于贝叶斯一个样本比例,多项式或子组之间的多项式或T检验,以及数据集边际目标分布以及多假设检测罚款。我们经验上显示了54个数据集,即SSD ++优于先前的子组设置发现方法和子组列表大小。
translated by 谷歌翻译
可渴望可以理解为ANSCOMBE和AUMANN的贝叶斯决策理论的扩展,以延伸到预期公用事业集。可取性的核心在于测量奖励的量表线性的假设。它是一个传统的假设,用于得出预期的效用模型,该模型与理性决策的一般表示相冲突。尤其是,阿莱斯(Allais)在1953年以著名的悖论指出了这一点。我们注意到,当我们将可取性视为逻辑理论时,公用事业量表起着封闭操作员的作用。该观察结果使我们能够通过通用闭合操作员表示实用程序量表来扩展到非线性情况。新理论直接以实际的非线性货币(货币)表达了奖励,这在野蛮的精神上很大程度上表达,同时可以说将基础假设削弱到最低限度。我们从一组赌博及其上价和高价(预防)的角度来表征新理论的主要特性。我们展示了Allais悖论如何在新理论中找到解决方案,并讨论了该理论中概率集的作用。
translated by 谷歌翻译
我们回答以下问题,哪些结合性查询以多种方式上的许多正和负面示例以及如何有效地构建此类示例的特征。结果,我们为一类连接的查询获得了一种新的有效的精确学习算法。我们的贡献的核心是两种新的多项式时间算法,用于在有限结构的同态晶格中构建前沿。我们还讨论了模式映射和描述逻辑概念的独特特征性和可学习性的影响。
translated by 谷歌翻译
在概念学习,数据库查询的反向工程,生成参考表达式以及知识图中的实体比较之类的应用中,找到以标记数据项形式分开的逻辑公式,该公式分开以标记数据项形式给出的正面和负面示例。在本文中,我们研究了存在本体论的数据的分离公式的存在。对于本体语言和分离语言,我们都专注于一阶逻辑及其以下重要片段:描述逻辑$ \ Mathcal {alci} $,受保护的片段,两变量的片段和受保护的否定片段。为了分离,我们还考虑(工会)连接性查询。我们考虑了几种可分离性,这些可分离性在负面示例的治疗中有所不同,以及他们是否承认使用其他辅助符号来实现分离。我们的主要结果是(所有变体)可分离性,不同语言的分离能力的比较以及确定可分离性的计算复杂性的研究。
translated by 谷歌翻译
我们派生并分析了一种用于估计有限簇树中的所有分裂的通用,递归算法以及相应的群集。我们进一步研究了从内核密度估计器接收级别设置估计时该通用聚类算法的统计特性。特别是,我们推出了有限的样本保证,一致性,收敛率以及用于选择内核带宽的自适应数据驱动策略。对于这些结果,我们不需要与H \“{o}连续性等密度的连续性假设,而是仅需要非参数性质的直观几何假设。
translated by 谷歌翻译
形状约束,例如非负,单调性,凸度或超模型性,在机器学习和统计的各种应用中都起着关键作用。但是,将此方面的信息以艰苦的方式(例如,在间隔的所有点)纳入预测模型,这是一个众所周知的具有挑战性的问题。我们提出了一个统一和模块化的凸优化框架,依赖于二阶锥(SOC)拧紧,以编码属于矢量值重现的载体内核Hilbert Spaces(VRKHSS)的模型对函数衍生物的硬仿射SDP约束。所提出的方法的模块化性质允许同时处理多个形状约束,并将无限数量的约束限制为有限的许多。我们证明了所提出的方案的收敛及其自适应变体的收敛性,利用VRKHSS的几何特性。由于基于覆盖的拧紧构造,该方法特别适合具有小到中等输入维度的任务。该方法的效率在形状优化,机器人技术和计量经济学的背景下进行了说明。
translated by 谷歌翻译
我们介绍并研究了分布的邻居晶格分解,这是有条件独立性的紧凑,非图形表示,在没有忠实的图形表示的情况下是有效的。这个想法是将变量的一组社区视为子集晶格,并将此晶格分配到凸sublattices中,每个晶格都直接编码有条件的独立关系集合。我们表明,这种分解存在于任何组成型绘画中,并且可以在高维度中有效且一致地计算出来。 {特别是,这给了一种方法来编码满足组合公理的分布所隐含的所有独立关系,该分布严格比图形方法通常假定的忠实假设弱弱。}我们还讨论了各种特殊案例,例如图形模型和投影晶格,每个晶格都有直观的解释。一路上,我们看到了这个问题与邻域回归密切相关的,该回归已在图形模型和结构方程式的背景下进行了广泛的研究。
translated by 谷歌翻译
对表示形式的研究对于任何形式的交流都是至关重要的,我们有效利用它们的能力至关重要。本文介绍了一种新颖的理论 - 代表性系统理论 - 旨在从三个核心角度从三个核心角度进行抽象地编码各种表示:语法,综合及其属性。通过介绍建筑空间的概念,我们能够在一个统一的范式下编码这些核心组件中的每个核心组件。使用我们的代表性系统理论,有可能在结构上将一个系统中的表示形式转换为另一个系统的表示形式。我们结构转化技术的固有方面是根据表示的属性(例如它们的相对认知有效性或结构复杂性)的代表选择。提供一般结构转化技术的主要理论障碍是缺乏终止算法。代表系统理论允许在没有终止算法的情况下衍生部分变换。由于代表性系统理论提供了一种通用编码代表系统的通用方法,因此消除了进一步的关键障碍:需要设计特定于系统的结构转换算法,这是当不同系统采用不同的形式化方法时所必需的。因此,代表性系统理论是第一个提供统一方法来编码表示形式,通过结构转换支持表示形式的第一个通用框架,并具有广泛的实用应用。
translated by 谷歌翻译
最先进的语言模型从任何输入文本返回自然语言文本继续。这种生成相干文本扩展的能力意味着显着的复杂性,包括语法和语义的知识。在本文中,我们提出了一种数学框架,用于传递给定文本的扩展概率分布,例如由今天的大型语言模型学习的概率分布到包含语义信息的丰富类别。粗略地说,我们在文本上模拟概率分布作为富于单位间隔的类别。此类别的对象是语言中的表达,HOM对象是一个表达式是另一个表达式的概率。此类别是句法 - 它描述了与之相关的内容。然后,通过yoneda嵌入,我们将在此语法类别上传递给富集的单位间隔valued copreseaves。这类丰富的CopReseSeals是语义 - 我们找到了意义,逻辑运营,如蕴涵,以及更详细的语义概念的构建块。
translated by 谷歌翻译
每个已知的人工深神经网络(DNN)都对应于规范Grothendieck的拓扑中的一个物体。它的学习动态对应于此拓扑中的形态流动。层中的不变结构(例如CNNS或LSTMS)对应于Giraud的堆栈。这种不变性应该是对概括属性的原因,即从约束下的学习数据中推断出来。纤维代表语义前类别(Culioli,Thom),在该类别上定义了人工语言,内部逻辑,直觉主义者,古典或线性(Girard)。网络的语义功能是其能够用这种语言表达理论的能力,以回答输出数据中有关输出的问题。语义信息的数量和空间是通过类比与2015年香农和D.Bennequin的Shannon熵的同源解释来定义的。他们概括了Carnap和Bar-Hillel(1952)发现的措施。令人惊讶的是,上述语义结构通过封闭模型类别的几何纤维对象进行了分类,然后它们产生了DNNS及其语义功能的同位不变。故意类型的理论(Martin-Loef)组织了这些物体和它们之间的纤维。 Grothendieck的导数分析了信息内容和交流。
translated by 谷歌翻译
Conformal prediction uses past experience to determine precise levels of confidence in new predictions. Given an error probability ǫ, together with a method that makes a prediction ŷ of a label y, it produces a set of labels, typically containing ŷ, that also contains y with probability 1 − ǫ. Conformal prediction can be applied to any method for producing ŷ: a nearest-neighbor method, a support-vector machine, ridge regression, etc.Conformal prediction is designed for an on-line setting in which labels are predicted successively, each one being revealed before the next is predicted. The most novel and valuable feature of conformal prediction is that if the successive examples are sampled independently from the same distribution, then the successive predictions will be right 1 − ǫ of the time, even though they are based on an accumulating dataset rather than on independent datasets.In addition to the model under which successive examples are sampled independently, other on-line compression models can also use conformal prediction. The widely used Gaussian linear model is one of these.This tutorial presents a self-contained account of the theory of conformal prediction and works through several numerical examples. A more comprehensive treatment of the topic is provided in Algorithmic Learning in a Random World, by Vladimir Vovk, Alex Gammerman, and Glenn Shafer (Springer, 2005).
translated by 谷歌翻译