最先进的语言模型从任何输入文本返回自然语言文本继续。这种生成相干文本扩展的能力意味着显着的复杂性,包括语法和语义的知识。在本文中,我们提出了一种数学框架,用于传递给定文本的扩展概率分布,例如由今天的大型语言模型学习的概率分布到包含语义信息的丰富类别。粗略地说,我们在文本上模拟概率分布作为富于单位间隔的类别。此类别的对象是语言中的表达,HOM对象是一个表达式是另一个表达式的概率。此类别是句法 - 它描述了与之相关的内容。然后,通过yoneda嵌入,我们将在此语法类别上传递给富集的单位间隔valued copreseaves。这类丰富的CopReseSeals是语义 - 我们找到了意义,逻辑运营,如蕴涵,以及更详细的语义概念的构建块。
translated by 谷歌翻译
每个已知的人工深神经网络(DNN)都对应于规范Grothendieck的拓扑中的一个物体。它的学习动态对应于此拓扑中的形态流动。层中的不变结构(例如CNNS或LSTMS)对应于Giraud的堆栈。这种不变性应该是对概括属性的原因,即从约束下的学习数据中推断出来。纤维代表语义前类别(Culioli,Thom),在该类别上定义了人工语言,内部逻辑,直觉主义者,古典或线性(Girard)。网络的语义功能是其能够用这种语言表达理论的能力,以回答输出数据中有关输出的问题。语义信息的数量和空间是通过类比与2015年香农和D.Bennequin的Shannon熵的同源解释来定义的。他们概括了Carnap和Bar-Hillel(1952)发现的措施。令人惊讶的是,上述语义结构通过封闭模型类别的几何纤维对象进行了分类,然后它们产生了DNNS及其语义功能的同位不变。故意类型的理论(Martin-Loef)组织了这些物体和它们之间的纤维。 Grothendieck的导数分析了信息内容和交流。
translated by 谷歌翻译
这项工作起源于观察到,今天的最先进的统计语言模型不仅符合他们的性能,而且非常重要 - 因为它们完全从非结构化文本数据中的相关性建立。后一种观察会提示一个基本的问题在于本文的核心:非结构化文本数据中存在的数学结构是什么?我们提出了丰富的类别理论作为自然答案。我们展示了来自有限字母表的符号序列,例如在文本语料库中发现的那些,形成富含概率的类别。然后,我们解决了第二个基本问题:如何以保留分类结构的方式存储和建模此信息?我们通过从我们丰富的文本类别构建一个归力来回答这一点,以对特定的丰富的密度运营商类别。后者利用了积极的Semidefinite运算符上的Loewner订单,这可以进一步解释为一个有关的玩具例子。
translated by 谷歌翻译
有条件的独立性已被广泛用于AI,因果推理,机器学习和统计数据。我们介绍分类生物,这是一种代数结构,用于表征条件独立性的普遍特性。分类物被定义为两个类别的混合体:一个编码由对象和箭头定义的预订的晶格结构;第二个二个参数化涉及定义​​条件独立性结构的三角体对象和形态,桥梁形态提供了二进制和三元结构之间的接口。我们使用公理集的三个众所周知的示例来说明分类生物:绘画,整数价值多组和分离型。 FOUNDOROIDS将一个分类型映射到另一个分类,从而保留了由共同域中所有三种类型的箭头定义的关系。我们描述了跨官能素的自然转化,该函数是跨常规物体和三角形对象的自然变化,以构建条件独立性的通用表示。我们使用分类器之间的辅助和单核,以抽象地表征条件独立性的图形和非图形表示的忠诚。
translated by 谷歌翻译
一对自然变换相关的一对仿函数,并与一对类别相关。它显示了结构或概念,从每个类别到另一个类别的概念和备份。另一方是Galois连接,代表理论,光谱和广义量子的共同分母。当其类别互相确定时,我们呼吁核。我们表明,可以解决核协定的每一个齐全。这种决议在强烈的意义上是个体化的。附件的核核心显示其概念核心,正如伴随线性操作者的奇异值分解一样,显示其规范基础。垫法对仿函数的两种复合材料诱导了一个MONAD和COMONAD。 MONADS和COMONADS将封闭和内部运营商从拓扑或逻辑的方式推广,同时在一侧提供饱和的代数结构和组合物,以及对方的基础攻击动力学和分解。它们被解决回到诱导类别的代数和基地的同时。核的核心是诱导类别的代数和基地的核心。它为两者提供了新的演示,揭示了构建COMONAD的代数和MONAD的含义。在他的精英早期工作中,Ross Street描述了两类Monads和Cononads之间的互动。提升核心建设,我们表明Monads上的由此产生的街道Monad强烈宽容,并提取了Monad的核心。双重治疗实现了Cononads的相同。应用纯2类理论的显着片段对数据分析的急性实际问题导致了新的理论结果。
translated by 谷歌翻译
“蜘蛛”是特殊的Frobenius代数的绰号,来自数学,物理和计算机科学的基本结构。预组是语言学的基本结构。预群组和蜘蛛已在自然语言处理中一起使用:一个用于语法,另一个用于语义。事实证明,预组织本身可以被称为预订关系类别中的尖蜘蛛,在那里他们自然地引起了语法。另一种方式,预订蜘蛛代数通常可以表征为预群的工会。这延伸了关系蜘蛛代数的表征,作为组的脱节工会。出现了结果的组成框架表明了了解和应用机器学习和数据分析中的基础结构的新方法。
translated by 谷歌翻译
十年自2010年以来,人工智能成功一直处于计算机科学和技术的最前沿,传染媒介空间模型已经巩固了人工智能最前沿的位置。与此同时,量子计算机已经变得更加强大,主要进步的公告经常在新闻中。这些区域的基础的数学技术比有时意识到更多的共同之处。传染媒介空间在20世纪30年代的量子力学的公理心脏上采取了位置,这一采用是从矢量空间的线性几何形状推导逻辑和概率的关键动机。粒子之间的量子相互作用是使用张量产品进行建模的,其也用于表达人工神经网络中的物体和操作。本文介绍了这些常见的数学区域中的一些,包括如何在人工智能(AI)中使用的示例,特别是在自动推理和自然语言处理(NLP)中。讨论的技术包括矢量空间,标量产品,子空间和含义,正交投影和否定,双向矩阵,密度矩阵,正算子和张量产品。应用领域包括信息检索,分类和含义,建模字传感和歧义,知识库的推断和语义构成。其中一些方法可能会在量子硬件上实现。该实施中的许多实际步骤都处于早期阶段,其中一些已经实现了。解释一些常见的数学工具可以帮助AI和量子计算中的研究人员进一步利用这些重叠,识别和沿途探索新方向。
translated by 谷歌翻译
We propose a layered hierarchical architecture called UCLA (Universal Causality Layered Architecture), which combines multiple levels of categorical abstraction for causal inference. At the top-most level, causal interventions are modeled combinatorially using a simplicial category of ordinal numbers. At the second layer, causal models are defined by a graph-type category. The non-random ``surgical" operations on causal structures, such as edge deletion, are captured using degeneracy and face operators from the simplicial layer above. The third categorical abstraction layer corresponds to the data layer in causal inference. The fourth homotopy layer comprises of additional structure imposed on the instance layer above, such as a topological space, which enables evaluating causal models on datasets. Functors map between every pair of layers in UCLA. Each functor between layers is characterized by a universal arrow, which defines an isomorphism between every pair of categorical layers. These universal arrows define universal elements and representations through the Yoneda Lemma, and in turn lead to a new category of elements based on a construction introduced by Grothendieck. Causal inference between each pair of layers is defined as a lifting problem, a commutative diagram whose objects are categories, and whose morphisms are functors that are characterized as different types of fibrations. We illustrate the UCLA architecture using a range of examples, including integer-valued multisets that represent a non-graphical framework for conditional independence, and causal models based on graphs and string diagrams using symmetric monoidal categories. We define causal effect in terms of the homotopy colimit of the nerve of the category of elements.
translated by 谷歌翻译
我们提出了普遍因果关系,这是一个基于类别理论的总体框架,该框架定义了基于因果推理的普遍特性,该属性独立于所使用的基本代表性形式主义。更正式的是,普遍的因果模型被定义为由对象和形态组成的类别,它们代表因果影响,以及进行干预措施(实验)和评估其结果(观察)的结构。函子在类别之间的映射和自然变换映射在相同两个类别的一对函子之间。我们框架中的抽象因果图是使用类别理论的通用构造构建的,包括抽象因果图的限制或共限制,或更普遍的KAN扩展。我们提出了普遍因果推断的两个基本结果。第一个结果称为普遍因果定理(UCT),与图的通用性有关,这些结果被视为函数映射对象和关系从抽象因果图的索引类别到一个实际因果模型,其节点由随机变量标记为实际因果模型和边缘代表功能或概率关系。 UCT指出,任何因果推论都可以以规范的方式表示为代表对象的抽象因果图的共同限制。 UCT取决于滑轮理论的基本结果。第二个结果是因果繁殖特性(CRP),指出对象x对另一个对象y的任何因果影响都可以表示为两个抽象因果图之间的自然转化。 CRP来自Yoneda引理,这是类别理论中最深层的结果之一。 CRP属性类似于复制元素希尔伯特空间中的繁殖属性,该元素是机器学习中内核方法的基础。
translated by 谷歌翻译
积极推论的中央概念是,物理系统参数概率的内部状态在外部世界的状态下衡量。这些可以被视为代理人的信仰,以贝叶斯先前或后部表示。在这里,我们开始发展一般理论,这将告诉我们何时适合将国家解释为以这种方式代表信仰。我们专注于系统可以被解释为执行贝叶斯滤波或贝叶斯推断的情况。我们使用类别理论的技术提供对存在这种解释的方法的形式定义。
translated by 谷歌翻译
统计决策问题是统计机器学习的基础。最简单的问题是二进制和多类分类以及类概率估计。其定义的核心是损失函数的选择,这是评估解决方案质量的手段。在本文中,我们从一个新的角度从基本的成分是具有特定结构的凸集,从而系统地开发了此类问题的损失函数理论。损耗函数定义为凸集的支持函数的子级别。因此,它是自动适当的(校准以估计概率)。这种观点提供了三个新颖的机会。它可以发展损失与(反)纳入之间的基本关系,而这似乎以前没有注意到。其次,它可以开发由凸集的计算诱导的损失的演算,从而允许不同损失之间的插值,因此是将损失定制到特定问题的潜在有用的设计工具。在此过程中,我们基于凸组集合的M-sums的现有结果,并大大扩展了现有的结果。第三,透视图导致了一种自然理论的“极性”(或“反向”)损失函数,这些函数源自凸集的极性二元,定义了损失,并形成了VOVK聚合算法的自然通用替代函数。
translated by 谷歌翻译
类比制作是人工智能和人工智能的核心,并在这种多样化任务中的应用程序的创造力作为致辞推理,学习,语言习得和故事讲述。本文从第一个原则介绍了一个摘要的类比比例的摘要代数框架,其形式的“$ a $的数量为$ b $ conal通用代数的常规设定中的$ c $ d $ d。这使我们能够以统一的方式比较可能跨越不同域的数学对象,这对于AI系统至关重要。事实证明,我们对类比比例的概念具有吸引力的数学属性。当我们从第一个原则构建我们的模型,只使用普通代数的基本概念,并且我们的模型问题是在文献中预先推出的类似商品比例的一些基本属性,以说服我们模型的合理性的读者,我们表明它可以自然嵌入通过模型 - 理论类型分为一阶逻辑,并从该角度证明类似的比例与结构保留映射兼容。这为其适用性提供了概念证据。在更广泛的意义上,本文是朝着模拟推理和学习系统理论的第一步,其潜在应用于基本的AI问题,如致料语言推理和计算学习和创造力。
translated by 谷歌翻译
对表示形式的研究对于任何形式的交流都是至关重要的,我们有效利用它们的能力至关重要。本文介绍了一种新颖的理论 - 代表性系统理论 - 旨在从三个核心角度从三个核心角度进行抽象地编码各种表示:语法,综合及其属性。通过介绍建筑空间的概念,我们能够在一个统一的范式下编码这些核心组件中的每个核心组件。使用我们的代表性系统理论,有可能在结构上将一个系统中的表示形式转换为另一个系统的表示形式。我们结构转化技术的固有方面是根据表示的属性(例如它们的相对认知有效性或结构复杂性)的代表选择。提供一般结构转化技术的主要理论障碍是缺乏终止算法。代表系统理论允许在没有终止算法的情况下衍生部分变换。由于代表性系统理论提供了一种通用编码代表系统的通用方法,因此消除了进一步的关键障碍:需要设计特定于系统的结构转换算法,这是当不同系统采用不同的形式化方法时所必需的。因此,代表性系统理论是第一个提供统一方法来编码表示形式,通过结构转换支持表示形式的第一个通用框架,并具有广泛的实用应用。
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
ALChour \“Ardenfors的AGM发布,Makinson继续代表与信仰变革有关的研究中的基石。Katsuno和Mendelzon(K&M)通过了AGM假设改变信仰基地,并在命题中的特征agm信仰基地修订有限签名的逻辑。我们概括了K&M在任意Tarskian逻辑中设置的(多个)基本修订版的方法,涵盖了具有经典模型 - 理论语义的所有逻辑,从而涵盖了知识表示和超越的各种逻辑。我们的通用配方适用于“基础”的各种概念(例如信仰集,任意或有限的句子或单句话)。核心结果是表示AGM基本修订运算符和某些“分配”之间双向对应的表示定理:函数映射信仰基础到总数 - 尚未传递 - “偏好”解释之间的关系。与此同时,我们为CAS提供了一个伴侣E当agm andodatience的AGM假设被遗弃时。我们还提供了所有逻辑的表征,我们的结果可以加强生产传递偏好关系的分配(如K&M的原始工作),根据语法依赖与独立性,引起了这种逻辑的两个表示定理。
translated by 谷歌翻译
Two approaches to AI, neural networks and symbolic systems, have been proven very successful for an array of AI problems. However, neither has been able to achieve the general reasoning ability required for human-like intelligence. It has been argued that this is due to inherent weaknesses in each approach. Luckily, these weaknesses appear to be complementary, with symbolic systems being adept at the kinds of things neural networks have trouble with and vice-versa. The field of neural-symbolic AI attempts to exploit this asymmetry by combining neural networks and symbolic AI into integrated systems. Often this has been done by encoding symbolic knowledge into neural networks. Unfortunately, although many different methods for this have been proposed, there is no common definition of an encoding to compare them. We seek to rectify this problem by introducing a semantic framework for neural-symbolic AI, which is then shown to be general enough to account for a large family of neural-symbolic systems. We provide a number of examples and proofs of the application of the framework to the neural encoding of various forms of knowledge representation and neural network. These, at first sight disparate approaches, are all shown to fall within the framework's formal definition of what we call semantic encoding for neural-symbolic AI.
translated by 谷歌翻译
D分隔标准通过某些条件独立性检测到关节概率分布与定向无环图的兼容性。在这项工作中,我们通过引入因果模型的分类定义,D分隔的分类概念,并证明了D-Exaration Criterion的抽象版本,从而在分类概率理论的背景下研究了这个问题。这种方法有两个主要好处。首先,分类D分隔是基于拓扑连接的非常直观的标准。其次,我们的结果适用于度量理论概率(具有标准的鲍尔空间),因此提供了与局部和全球马尔可夫属性等效性具有因果关系兼容性的简洁证明。
translated by 谷歌翻译
光学和镜头是抽象的分类小工具,它们以双向数据流对系统进行建模。在本文中,我们观察到,光学的表示定义(通过从外部观察它们的行为来识别两个光学的定义 - 不适用于操作,面向软件的方法,不仅可以观察到光学,而且还要构建其内部设置。我们确定了笛卡尔光学和镜头的表示异构类别之间的操作差异:它们的不同组成规则和相应的时空权衡,将它们定位在光谱的两个相对端。通过这些动机,我们将现有的分类结构及其关系提升到了两类水平,表明相关的操作问题变得可见。我们定义2类别$ \ textbf {2-optic}(\ Mathcal {c})$,其2细胞明确跟踪Optics的内部配置。我们显示1类别$ \ textbf {Optic}(\ Mathcal {c})$通过本地列出此2类别的连接组件而产生。我们表明,将镜头嵌入到笛卡尔光学器件中的渗透器从函子削弱到oplax函子,其oplaxator现在检测到不同的组成规则。我们确定显示该函子在任何标准2类中构成邻接的一部分的困难。我们确定了一个猜想,即笛卡尔透镜和光学之间的众所周知的同构是由于其双分类对应物之间的LAX 2-插条而产生的。除了介绍新研究外,本文还旨在对该主题进行访问。
translated by 谷歌翻译
我们概述了在其知识表示和声明问题解决的应用中的视角下的时间逻辑编程。这些程序是将通常规则与时间模态运算符组合的结果,如线性时间时间逻辑(LTL)。我们专注于最近的非单调形式主义的结果​​称为时间平衡逻辑(电话),该逻辑(电话)为LTL的全语法定义,但是基于平衡逻辑执行模型选择标准,答案集编程的众所周知的逻辑表征(ASP )。我们获得了稳定模型语义的适当延伸,以进行任意时间公式的一般情况。我们记得电话和单调基础的基本定义,这里的时间逻辑 - 和那里(THT),并研究无限和有限迹线之间的差异。我们还提供其他有用的结果,例如将转换成其他形式主义,如量化的平衡逻辑或二阶LTL,以及用于基于自动机计算的时间稳定模型的一些技术。在第二部分中,我们专注于实际方面,定义称为较近ASP的时间逻辑程序的句法片段,并解释如何在求解器Telingo的构建中被利用。
translated by 谷歌翻译
This work proposes a view of probability as a relative measure rather than an absolute one. To demonstrate this concept, we focus on finite outcome spaces and develop three fundamental axioms that establish requirements for relative probability functions. We then provide a library of examples of these functions and a system for composing them. Additionally, we discuss a relative version of Bayesian inference and its digital implementation. Finally, we prove the topological closure of the relative probability space, highlighting its ability to preserve information under limits.
translated by 谷歌翻译