引力波(GW)检测现在是普遍的,并且随着GW探测器的全球网络的灵敏度,我们将观察每年瞬态GW事件的$ \ MATHCAL {O}(100)美元。用于估计其源参数的目前的方法采用最佳敏感但是计算昂贵的贝叶斯推理方法,其中典型的分析在6小时和5天之间取。对于二元中子星和中子星黑洞系统提示,预计在1秒 - 1分钟的时间尺度和用于提醒EM随访观察员的最快方法,可以提供估计在$ \ mathcal {o }(1)$分钟,在有限的关键源参数范围内。在这里,我们表明,在二进制黑洞信号上预先培训的条件变形Autiachoder可以返回贝叶斯后概率估计。仅针对给定的先前参数空间执行一次训练程序,然后可以将所得培训的机器能够生成描述后部分配$ \ SIM 6 $幅度的样本比现有技术更快。
translated by 谷歌翻译
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
translated by 谷歌翻译
快速,高度准确,可靠的引力波浪的推动,可以实现实时多信使天文学。目前贝叶斯推理方法虽然高度准确可靠,但很慢。深度学习模型已经表明了引力波的推理任务非常快速,但由于神经网络的黑箱性质,它们的产出本质上是可疑的。在这项工作中,我们通过应用了多头卷积神经网络产生的近似后验的重要性抽样加入贝叶斯推论和深度学习。神经网络参数化Von Mises-Fisher和天空坐标和高斯分布的天空坐标和两个群众,用于给定Ligo和Virgo探测器的模拟重力波注射。我们为看不见的引力波事件产生跨ysmaps,这是几分钟内使用贝叶斯推理产生的高等类似的预测。此外,我们可以检测神经网络的差,并迅速向它们标记。
translated by 谷歌翻译
我们介绍了深度学习模型,以估计黑洞兼并的二元组件的群众,$(m_1,m_2)$,以及合并后巧妙剩余滞留的三个天体性质,即最终旋转,$ a_f $,以及ringdown振荡的频率和阻尼时间为基础$ \ ell = m = 2 $酒吧模式,$(\ OMEGA_R,\ OMEGA_I)$。我们的神经网络将修改的$ \ texttt {wavenet} $架构与对比学习和标准化流相结合。我们将这些模型验证在先前分布通过闭合的分析表达描述后的高斯缀合物的先前家庭。确认我们的模型产生统计上一致的结果,我们使用它们来估计五个二进制黑洞的天体物理参数$(m_1,m_2,a_f,\ oomega_r,\ omega_i):$ \ texttt {gw150914},\ texttt {gw170104 },\ texttt {gw170814},\ texttt {gw190521} $和$ \ texttt {gw190630} $。我们使用$ \ texttt {pycbc推理} $直接比较传统的贝叶斯方法进行参数估计与我们的深度学习的后部分布。我们的研究结果表明,我们的神经网络模型预测编码物理相关性的后分布,以及我们的数据驱动的中值结果和90美元\%$置信区间与引力波贝叶斯分析产生的数据相似。此方法需要单个V100 $ \ TextTT {NVIDIA} $ GPU,以在每次事件中生成2毫秒内的中位值和后部分布。这个神经网络和使用的教程,可在$ \ texttt {scounty} $ \ texttt {scounty hub} $。
translated by 谷歌翻译
基于采样的推理技术是现代宇宙学数据分析的核心;然而,这些方法与维度不良,通常需要近似或顽固的可能性。在本文中,我们描述了截短的边际神经比率估计(TMNRE)(即所谓的基于模拟的推断的新方法)自然避免了这些问题,提高了$(i)$效率,$(ii)$可扩展性和$ (iii)推断后的后续后续的可信度。使用宇宙微波背景(CMB)的测量,我们表明TMNRE可以使用比传统马尔可夫链蒙特卡罗(MCMC)方法更少模拟器呼叫的数量级来实现融合的后海后。值得注意的是,所需数量的样本有效地独立于滋扰参数的数量。此外,称为\ MEMPH {本地摊销}的属性允许对基于采样的方法无法访问的严格统计一致性检查的性能。 TMNRE承诺成为宇宙学数据分析的强大工具,特别是在扩展宇宙学的背景下,其中传统的基于采样的推理方法所需的时间级数融合可以大大超过$ \ Lambda $ CDM等简单宇宙学模型的时间。为了执行这些计算,我们使用开源代码\ texttt {swyft}来使用TMNRE的实现。
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
数据和标签的联合分布的KL差异目标允许在随机变异推断的一个保护伞下统一监督的学习和变异自动编码器(VAE)。统一激发了扩展的监督方案,该方案允许计算神经网络模型的合适性P值。通过神经网络摊销的条件归一化流在这种结构中至关重要。我们讨论了它们如何允许在产品空间上共同定义的后代定义的覆盖范围,例如$ \ mathbb {r}^n \ times \ times \ mathcal {s}^m $,它包含在方向上的海报。最后,系统的不确定性自然包含在变化观点中。在经典的可能性方法或其他机器学习模型中,(1)系统,(2)覆盖范围和(3)拟合优度的成分通常并非全部可用,或者至少有一个受到严格限制。相比之下,拟议的扩展监督培训和摊销标准化流量可容纳所有三个,用于在产品空间上定义的任意统计分布的变异推理,例如$ \ mathbb {r}^n \ times \ times \ ldots \ ldots \ times \ times \ mathcal {s}^m {s}^m $,没有基本数据复杂性的基本障碍。因此,它具有当代(Astro-)粒子物理学家的统计工具箱的巨大潜力。
translated by 谷歌翻译
在这项工作中,我们使用变分推论来量化无线电星系分类的深度学习模型预测的不确定性程度。我们表明,当标记无线电星系时,个体测试样本的模型后差水平与人类不确定性相关。我们探讨了各种不同重量前沿的模型性能和不确定性校准,并表明稀疏事先产生更良好的校准不确定性估计。使用单个重量的后部分布,我们表明我们可以通过从最低信噪比(SNR)中除去权重来修剪30%的完全连接的层权重,而无需显着损失性能。我们证明,可以使用基于Fisher信息的排名来实现更大程度的修剪,但我们注意到两种修剪方法都会影响Failaroff-Riley I型和II型无线电星系的不确定性校准。最后,我们表明,与此领域的其他工作相比,我们经历了冷的后效,因此后部必须缩小后加权以实现良好的预测性能。我们检查是否调整成本函数以适应模型拼盘可以弥补此效果,但发现它不会产生显着差异。我们还研究了原则数据增强的效果,并发现这改善了基线,而且还没有弥补观察到的效果。我们将其解释为寒冷的后效,因为我们的培训样本过于有效的策划导致可能性拼盘,并将其提高到未来无线电银行分类的潜在问题。
translated by 谷歌翻译
统计模型是机器学习的核心,具有广泛适用性,跨各种下游任务。模型通常由通过最大似然估计从数据估计的自由参数控制。但是,当面对现实世界数据集时,许多模型运行到一个关键问题:它们是在完全观察到的数据方面配制的,而在实践中,数据集会困扰缺失数据。来自不完整数据的统计模型估计理论在概念上类似于潜在变量模型的估计,其中存在强大的工具,例如变分推理(VI)。然而,与标准潜在变量模型相比,具有不完整数据的参数估计通常需要估计缺失变量的指数 - 许多条件分布,因此使标准的VI方法是棘手的。通过引入变分Gibbs推理(VGI),是一种新的通用方法来解决这个差距,以估计来自不完整数据的统计模型参数。我们在一组合成和实际估算任务上验证VGI,从不完整的数据中估算重要的机器学习模型,VAE和标准化流程。拟议的方法,同时通用,实现比现有的特定模型特定估计方法竞争或更好的性能。
translated by 谷歌翻译
我们介绍了第一个机器学习引力波搜索模拟数据挑战(MLGWSC-1)的结果。在这一挑战中,参与的小组必须从二进制黑洞合并中识别出复杂性和持续时间逐渐嵌入在逐渐更现实的噪声中的引力波信号。 4个提供的数据集中的决赛包含O3A观察的真实噪声,并发出了20秒的持续时间,其中包含进动效应和高阶模式。我们介绍了在提交前从参与者未知的1个月的测试数据中得出的6个输入算法的平均灵敏度距离和运行时。其中4个是机器学习算法。我们发现,最好的基于机器学习的算法能够以每月1个的错误警报率(FAR)的速度(FAR)实现基于匹配过滤的生产分析的敏感距离的95%。相反,对于真实的噪音,领先的机器学习搜索获得了70%。为了更高的范围,敏感距离缩小的差异缩小到某些数据集上选择机器学习提交的范围$ \ geq 200 $以优于传统搜索算法的程度。我们的结果表明,当前的机器学习搜索算法可能已经在有限的参数区域中对某些生产设置有用。为了改善最新的技术,机器学习算法需要降低他们能够检测信号并将其有效性扩展到参数空间区域的虚假警报率,在这些区域中,建模的搜索在计算上很昂贵。根据我们的发现,我们汇编了我们认为,将机器学习搜索提升到重力波信号检测中的宝贵工具,我们认为这是最重要的研究领域。
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
我们研究了通过机器学习从欧几里得相关函数重建光谱函数的逆问题。我们提出了一个新型的神经网络SVAE,该网络基于变异自动编码器(VAE),可以自然应用于逆问题。 SVAE的突出特征是,作为损失函数中的先验信息包含了频谱函数的地面真实值的香农 - jaynes熵项,要最小化。我们使用高斯混合模型产生的一般光谱函数训练网络。作为一项测试,我们使用由一个由一个共振峰制成的四种不同类型的物理动机函数产生的相关器,连续项和使用非相关性QCD获得的扰动光谱函数。从模拟数据测试我们发现,在大多数情况下,SVAE与重建光谱函数质量的最大熵方法(MEM)相媲美,甚至在光谱函数具有尖峰的情况下且数据数量不足的情况下,SVAE与MEM的表现相当。相关器中的点。通过在淬火晶格QCD中获得的charmonium的时间相关函数应用于$ 128^3 \ times96 $ lattices和$ 128^3 \ times48 $ lattices,我们找到了$ 128^3 \ times96 $ lattices in 0.75 $ t_c $ on 0.75 $ t_c $ on 0.75 $ t_c $,我们发现,我们找到了,我们找到了,我们找到从SVAE和MEM提取的$ \ eta_c $的共振峰值对晶格模拟中采用的时间方向($ n_ \ tau $)的点数具有很大的依赖为了解决$ \ eta_c $的命运为1.5 $ t_c $。
translated by 谷歌翻译
我们描述了作为黑暗机器倡议和LES Houches 2019年物理学研讨会进行的数据挑战的结果。挑战的目标是使用无监督机器学习算法检测LHC新物理学的信号。首先,我们提出了如何实现异常分数以在LHC搜索中定义独立于模型的信号区域。我们定义并描述了一个大型基准数据集,由> 10亿美元的Muton-Proton碰撞,其中包含> 10亿美元的模拟LHC事件组成。然后,我们在数据挑战的背景下审查了各种异常检测和密度估计算法,我们在一组现实分析环境中测量了它们的性能。我们绘制了一些有用的结论,可以帮助开发无监督的新物理搜索在LHC的第三次运行期间,并为我们的基准数据集提供用于HTTPS://www.phenomldata.org的未来研究。重现分析的代码在https://github.com/bostdiek/darkmachines-unsupervisedChallenge提供。
translated by 谷歌翻译
高斯工艺(GPS)模型是具有由内核功能控制的电感偏差的功能丰富的分布。通过使用边际似然作为目标优化内核超参数来实现学习。这种称为II类型最大似然(ML-II)的经典方法产生了高参数的点估计,并继续成为培训GPS的默认方法。然而,这种方法在低估预测不确定性并且易于在有许多近似数目时易于过度拟合。此外,基于梯度的优化使ML-II点估计高度易受局部最小值的存在。这项工作提出了一种替代的学习过程,其中核心函数的超参数使用嵌套采样(NS)被边缘化,这是一种非常适合于复杂的多模态分布来采样的技术。我们专注于具有频谱混合物(SM)粒子的回归任务,并发现定量模型不确定性的原则方法导致在一系列合成和基准数据集中的预测性能中的大量收益。在这种情况下,还发现嵌套的抽样在汉密尔顿蒙特卡罗(HMC)上提供了速度优势,广泛认为是基于MCMC推断的金标准。
translated by 谷歌翻译
我们提出了一种新的方法,可以在复杂模型(例如贝叶斯神经网络)中执行近似贝叶斯推断。该方法比马尔可夫链蒙特卡洛更可扩展到大数据,它具有比变异推断更具表现力的模型,并且不依赖于对抗训练(或密度比估计)。我们采用了构建两个模型的最新方法:(1)一个主要模型,负责执行回归或分类; (2)一个辅助,表达的(例如隐式)模型,该模型定义了主模型参数上的近似后验分布。但是,我们根据后验预测分布的蒙特卡洛估计值通过梯度下降来优化后验模型的参数 - 这是我们唯一的近似值(除后模型除外)。只需要指定一个可能性,可以采用各种形式,例如损失功能和合成可能性,从而提供无可能的方法的形式。此外,我们制定了该方法,使后样品可以独立于或有条件地取决于主要模型的输入。后一种方法被证明能够增加主要模型的明显复杂性。我们认为这在诸如替代和基于物理的模型之类的应用中很有用。为了促进贝叶斯范式如何提供不仅仅是不确定性量化的方式,我们证明了:不确定性量化,多模式以及具有最新预测的神经网络体系结构的应用。
translated by 谷歌翻译
远期操作员的计算成本和选择适当的先前分布的计算成本挑战了贝叶斯对高维逆问题的推断。摊销的变异推理解决了这些挑战,在这些挑战中,训练神经网络以近似于现有模型和数据对的后验分布。如果以前看不见的数据和正态分布的潜在样品作为输入,则预处理的深神经网络(在我们的情况下是有条件的正常化流量)几乎没有成本的后验样品。然而,这种方法的准确性取决于高保真训练数据的可用性,由于地球的异质结构,由于地球物理逆问题很少存在。此外,准确的摊销变异推断需要从训练数据分布中汲取观察到的数据。因此,我们建议通过基于物理学的校正对有条件的归一化流量分布来提高摊销变异推断的弹性。为了实现这一目标,我们不是标准的高斯潜在分布,我们通过具有未知平均值和对角线协方差的高斯分布来对潜在分布进行参数化。然后,通过最小化校正后分布和真实后验分布之间的kullback-leibler差异来估算这些未知数量。尽管通用和适用于其他反问题,但通过地震成像示例,我们表明我们的校正步骤可提高摊销变异推理的鲁棒性,以相对于源实验数量的变化,噪声方差以及先前分布的变化。这种方法提供了伪像有限的地震图像,并评估其不确定性,其成本大致与五个反度迁移相同。
translated by 谷歌翻译
变异推理(VI)的核心原理是将计算复杂后概率密度计算的统计推断问题转换为可拖动的优化问题。该属性使VI比几种基于采样的技术更快。但是,传统的VI算法无法扩展到大型数据集,并且无法轻易推断出越野数据点,而无需重新运行优化过程。该领域的最新发展,例如随机,黑框和摊销VI,已帮助解决了这些问题。如今,生成的建模任务广泛利用摊销VI来实现其效率和可扩展性,因为它利用参数化函数来学习近似的后验密度参数。在本文中,我们回顾了各种VI技术的数学基础,以构成理解摊销VI的基础。此外,我们还概述了最近解决摊销VI问题的趋势,例如摊销差距,泛化问题,不一致的表示学习和后验崩溃。最后,我们分析了改善VI优化的替代差异度量。
translated by 谷歌翻译
神经密度估计值证明在各种研究领域进行高效的仿真贝叶斯推理方面具有显着强大。特别是,Bayesflow框架使用两步方法来实现在仿真程序隐式地定义似然函数的设置中的摊销参数估计。但是当模拟是现实差的差异时,这种推断是多么忠实?在本文中,我们概念化了基于模拟的推论中出现的模型误操作的类型,并系统地研究了这些误操作下的Bayesflow框架的性能。我们提出了一个增强优化目标,它对潜伏数据空间上的概率结构施加了概率结构,并利用了最大平均差异(MMD)来检测推理期间的可能灾难性的误操作,破坏了所获得的结果的有效性。我们验证了许多人工和现实的误操作的检测标准,从玩具共轭模型到复杂的决策和疾病爆发动态的复杂模型应用于实际数据。此外,我们表明后部推理误差随着真实数据生成分布与潜在摘要空间中的典型模拟集之间的常数而增加。因此,我们展示了MMD的双重实用性作为检测模型误操作的方法和作为验证摊销贝叶斯推理的忠实性的代理。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributions is two-fold. First, we show that a reparameterization of the variational lower bound yields a lower bound estimator that can be straightforwardly optimized using standard stochastic gradient methods. Second, we show that for i.i.d. datasets with continuous latent variables per datapoint, posterior inference can be made especially efficient by fitting an approximate inference model (also called a recognition model) to the intractable posterior using the proposed lower bound estimator. Theoretical advantages are reflected in experimental results.
translated by 谷歌翻译