在社会科学和企业中观测数据的分析中,难以获得“(准)单源数据集”,其中同时观察到感兴趣的变量。相反,通常针对不同的个体或单位获取多源数据集。已经提出了各种方法来研究每个数据集中的变量之间的关系,例如匹配和潜在的变量建模。有必要利用这些数据集作为具有缺失变量的单源数据集。现有方法假设要集成的数据集是从相同的人群中获取,或者采样取决于协变量。在缺失方面,这种假设被称为随机(MAR)缺失。然而,正如在应用研究中所示的那样,这一假设可能不会在实际数据分析中保持,并且获得的结果可能偏置。我们提出了一种数据融合方法,不认为数据集是均匀的。我们使用用于非MAR缺失数据的高斯过程潜变量模型。该模型假设关注的变量和缺失的概率取决于潜在变量。模拟研究和实际数据分析表明,具有缺失数据机制和潜在高斯过程的提出方法产生有效估计,而现有方法提供严重偏置的估计。这是第一研究,其中在数据融合问题中的可谐振假设下考虑并解决了对数据集的非随机分配。
translated by 谷歌翻译
近年来,深度学习(DL)方法的流行程度急剧增加,并且在生物医学科学中的监督学习问题中的应用显着增长。但是,现代生物医学数据集中缺失数据的较高流行率和复杂性对DL方法提出了重大挑战。在这里,我们在深入学习的广义线性模型的背景下,对缺失数据进行了正式处理,这是一种监督的DL架构,用于回归和分类问题。我们提出了一种新的体系结构,即\ textit {dlglm},这是第一个能够在训练时在输入功能和响应中灵活地说明忽略和不可忽视的缺失模式之一。我们通过统计模拟证明,我们的方法在没有随机(MNAR)缺失的情况下胜过现有的监督学习任务方法。我们从UCI机器学习存储库中对银行营销数据集进行了案例研究,在该数据集中我们预测客户是否基于电话调查数据订阅了产品。
translated by 谷歌翻译
潜在位置网络模型是网络科学的多功能工具;应用程序包括集群实体,控制因果混淆,并在未观察的图形上定义前提。估计每个节点的潜在位置通常是贝叶斯推理问题的群体,吉布斯内的大都市是最流行的近似后分布的工具。然而,众所周知,GIBBS内的大都市对于大型网络而言是低效;接受比计算成本昂贵,并且所得到的后绘高度相关。在本文中,我们提出了一个替代的马尔可夫链蒙特卡罗战略 - 使用分裂哈密顿蒙特卡罗和萤火虫蒙特卡罗的组合定义 - 利用后部分布的功能形式进行更有效的后退计算。我们展示了这些战略在吉布斯和综合网络上的其他算法中优于大都市,以及学区的教师和工作人员的真正信息共享网络。
translated by 谷歌翻译
我们提出了一种基于配对构造的模型组件的广义添加剂模型,并以预测为主要目的。该模型组件的设计使我们的模型可以捕获响应协变量之间关系中潜在的复杂相互作用效应。此外,我们的模型不需要连续协变量的离散化,因此适用于许多此类协变量的问题。此外,我们设计了一种受梯度增强启发的拟合算法,以及通过对模型空间和近似值的限制来加快时间对比计算的限制,用于模型选择和模型选择的有效程序。除了我们的模型在更高维度中成为现实的选择绝对必要外,这些技术还可以作为设计有效模型选择算法的其他类型的Copula回归模型的基础。我们已经在模拟研究中探索了我们方法的特征,特别是将其与自然替代方案进行比较,例如逻辑回归,经典增强模型和受到惩罚的逻辑回归。我们还展示了我们在威斯康星州乳腺癌数据集和波士顿住房数据集上的方法。结果表明,即使离散协变量的比例很高,我们的方法的预测性能要么比其他方法更好或可比其他方法媲美。
translated by 谷歌翻译
我们提出了一种使用边缘似然的分布式贝叶斯模型选择的一般方法,其中数据集被分开在非重叠子集中。这些子集仅由个别工人本地访问,工人之间没有共享数据。我们近似通过在每个子集的每个子集上从后部采样通过Monte Carlo采样的完整数据的模型证据。结果使用一种新的方法来组合,该方法校正使用所产生的样本的汇总统计分裂。我们的鸿沟和征服方法使贝叶斯模型在大型数据设置中选择,利用所有可用信息,而是限制工人之间的沟通。我们派生了理论误差界限,这些错误界限量化了计算增益与精度损失之间的结果。当我们的真实世界实验所示,令人尴尬的平行性质在大规模数据集时产生了重要的速度。此外,我们展示了如何在可逆跳转设置中扩展建议的方法以在可逆跳转设置中进行模型选择,该跳转设置在一个运行中探讨多个特征组合。
translated by 谷歌翻译
离散数据丰富,并且通常作为计数或圆形数据而出现。甚至对于线性回归模型,缀合格前沿和闭合形式的后部通常是不可用的,这需要近似诸如MCMC的后部推理。对于广泛的计数和圆形数据回归模型,我们介绍了能够闭合后部推理的共轭前沿。密钥后和预测功能可通过直接蒙特卡罗模拟来计算。至关重要的是,预测分布是离散的,以匹配数据的支持,并且可以在多个协变量中进行共同评估或模拟。这些工具广泛用途是线性回归,非线性模型,通过基础扩展,以及模型和变量选择。多种仿真研究表明计算,预测性建模和相对于现有替代方案的选择性的显着优势。
translated by 谷歌翻译
在存在未衡量的混杂因素的情况下,我们解决了数据融合的治疗效应估计问题,即在不同的治疗分配机制下收集的多个数据集。例如,营销人员可以在不同时间/地点为相同产品分配不同的广告策略。为了处理由未衡量的混杂因素和数据融合引起的偏见,我们建议将观察数据分为多组(每个组具有独立治疗分配机制),然后将组指标显式地模拟为潜在的组仪器变量(LATGIV),将其模拟为实施基于IV的回归。在本文中,我们概念化了这种思想,并开发了一个统一的框架,以(1)估计跨群体观察到的变量的分布差异; (2)对不同治疗分配机制的LATGIV模型; (3)插入latgivs以估计治疗响应函数。经验结果证明了与最新方法相比,LATGIV的优势。
translated by 谷歌翻译
Causal inference is the process of using assumptions, study designs, and estimation strategies to draw conclusions about the causal relationships between variables based on data. This allows researchers to better understand the underlying mechanisms at work in complex systems and make more informed decisions. In many settings, we may not fully observe all the confounders that affect both the treatment and outcome variables, complicating the estimation of causal effects. To address this problem, a growing literature in both causal inference and machine learning proposes to use Instrumental Variables (IV). This paper serves as the first effort to systematically and comprehensively introduce and discuss the IV methods and their applications in both causal inference and machine learning. First, we provide the formal definition of IVs and discuss the identification problem of IV regression methods under different assumptions. Second, we categorize the existing work on IV methods into three streams according to the focus on the proposed methods, including two-stage least squares with IVs, control function with IVs, and evaluation of IVs. For each stream, we present both the classical causal inference methods, and recent developments in the machine learning literature. Then, we introduce a variety of applications of IV methods in real-world scenarios and provide a summary of the available datasets and algorithms. Finally, we summarize the literature, discuss the open problems and suggest promising future research directions for IV methods and their applications. We also develop a toolkit of IVs methods reviewed in this survey at https://github.com/causal-machine-learning-lab/mliv.
translated by 谷歌翻译
我们开发了一种贝叶斯方法,以预测从具有多通道(即多维张量)结构的多个来源收集的数据的连续或二元结果。作为一个激励示例,我们将来自多个'Omics源的分子数据考虑在多个发育时间点上测量,作为恒河猴模型中早期铁缺乏症(ID)的预测指标。我们在系数上使用具有低级别结构的线性模型来捕获多路依赖性,并在每个源分别对系数的方差进行建模以推断其相对贡献。共轭先验促进了有效的吉布斯采样算法以进行后推理,假设有正常误差的连续结果或具有概率链接的二元结果。模拟表明,我们的模型在错误分类速率和估计系数与真实系数的相关性方面的性能如预期的,在考虑到不同来源的不同信号大小时,通过合并多路结构和适度的增长,可以通过稳定的性能增长。此外,它为我们的激励应用提供了可靠的ID猴子分类。以R代码形式的软件可在https://github.com/biostatskim/bayesmsmw上获得。
translated by 谷歌翻译
在广泛的任务中,在包括医疗处理,广告和营销和政策制定的发​​展中,对观测数据进行因果推断非常有用。使用观察数据进行因果推断有两种重大挑战:治疗分配异质性(\ Texit {IE},治疗和未经处理的群体之间的差异),并且没有反事实数据(\ TEXTIT {IE},不知道是什么已经发生了,如果确实得到治疗的人,反而尚未得到治疗)。通过组合结构化推论和有针对性的学习来解决这两个挑战。在结构方面,我们将联合分布分解为风险,混淆,仪器和杂项因素,以及在目标学习方面,我们应用来自影响曲线的规则器,以减少残余偏差。进行了一项消融研究,对基准数据集进行评估表明,TVAE具有竞争力和最先进的艺术表现。
translated by 谷歌翻译
Although understanding and characterizing causal effects have become essential in observational studies, it is challenging when the confounders are high-dimensional. In this article, we develop a general framework $\textit{CausalEGM}$ for estimating causal effects by encoding generative modeling, which can be applied in both binary and continuous treatment settings. Under the potential outcome framework with unconfoundedness, we establish a bidirectional transformation between the high-dimensional confounders space and a low-dimensional latent space where the density is known (e.g., multivariate normal distribution). Through this, CausalEGM simultaneously decouples the dependencies of confounders on both treatment and outcome and maps the confounders to the low-dimensional latent space. By conditioning on the low-dimensional latent features, CausalEGM can estimate the causal effect for each individual or the average causal effect within a population. Our theoretical analysis shows that the excess risk for CausalEGM can be bounded through empirical process theory. Under an assumption on encoder-decoder networks, the consistency of the estimate can be guaranteed. In a series of experiments, CausalEGM demonstrates superior performance over existing methods for both binary and continuous treatments. Specifically, we find CausalEGM to be substantially more powerful than competing methods in the presence of large sample sizes and high dimensional confounders. The software of CausalEGM is freely available at https://github.com/SUwonglab/CausalEGM.
translated by 谷歌翻译
最近,经验可能性已在贝叶斯框架下广泛应用。马尔可夫链蒙特卡洛(MCMC)方法经常用于从感兴趣参数的后验分布中采样。然而,可能性支持的复杂性,尤其是非凸性的性质,在选择适当的MCMC算法时建立了巨大的障碍。这种困难限制了在许多应用中基于贝叶斯的经验可能性(贝叶赛)方法的使用。在本文中,我们提出了一个两步的大都会黑斯廷斯算法,以从贝耶斯后期进行采样。我们的建议是在层次上指定的,其中确定经验可能性的估计方程用于根据其余参数的建议值提出一组参数的值。此外,我们使用经验可能性讨论贝叶斯模型的选择,并将我们的两步大都会黑斯廷斯算法扩展到可逆的跳跃马尔可夫链蒙特卡洛手术程序,以便从最终的后验中采样。最后,提出了我们提出的方法的几种应用。
translated by 谷歌翻译
近几十年来,技术进步使得可以收集大数据集。在这种情况下,基于模型的群集是一种非常流行的,灵活和可解释的方法,用于在明确定义的统计框架中进行数据探索。大型数据集的增加之一是缺失值更频繁。但是,传统方式(由于丢弃具有缺失的值或估算方法的观察)不是为聚类目的而设计的。此外,它们很少适用于常规情况,虽然在实践中频繁地缺失,但是当缺失取决于未观察到的数据值时,缺失就缺失(mnar)值,而且可能在观察到的数据值上。本文的目标是通过直接在基于模型的聚类算法内嵌入MNAR数据来提出一种新的方法。我们为数据和缺失数据指示器的联合分布进行了选择模型。它对应于数据分布的混合模型和缺失数据机制的一般Mnar模型,其可以取决于底层类(未知)和/或缺失变量本身的值。导出大量有意义的MNAR子模型,对每个子模型研究了参数的可识别性,这通常是任何MNAR提案的关键问题。考虑EM和随机EM算法估计。最后,我们对合成数据的提议子模型进行了实证评估,我们说明了我们的方法对医疗寄存器的方法,创伤者(R)数据集。
translated by 谷歌翻译
回归模型用于各种应用,为来自不同领域的研究人员提供强大的科学工具。线性或简单的参数,模型通常不足以描述输入变量与响应之间的复杂关系。通过诸如神经网络的灵活方法可以更好地描述这种关系,但这导致不太可解释的模型和潜在的过度装备。或者,可以使用特定的参数非线性函数,但是这种功能的规范通常是复杂的。在本文中,我们介绍了一种灵活的施工方法,高度灵活的非线性参数回归模型。非线性特征是分层的,类似于深度学习,但对要考虑的可能类型的功能具有额外的灵活性。这种灵活性,与变量选择相结合,使我们能够找到一小部分重要特征,从而可以更具可解释的模型。在可能的功能的空间内,考虑了贝叶斯方法,基于它们的复杂性引入功能的前沿。采用遗传修改模式跳跃马尔可夫链蒙特卡罗算法来执行贝叶斯推理和估计模型平均的后验概率。在各种应用中,我们说明了我们的方法如何用于获得有意义的非线性模型。此外,我们将其预测性能与多个机器学习算法进行比较。
translated by 谷歌翻译
Real engineering and scientific applications often involve one or more qualitative inputs. Standard Gaussian processes (GPs), however, cannot directly accommodate qualitative inputs. The recently introduced latent variable Gaussian process (LVGP) overcomes this issue by first mapping each qualitative factor to underlying latent variables (LVs), and then uses any standard GP covariance function over these LVs. The LVs are estimated similarly to the other GP hyperparameters through maximum likelihood estimation, and then plugged into the prediction expressions. However, this plug-in approach will not account for uncertainty in estimation of the LVs, which can be significant especially with limited training data. In this work, we develop a fully Bayesian approach for the LVGP model and for visualizing the effects of the qualitative inputs via their LVs. We also develop approximations for scaling up LVGPs and fully Bayesian inference for the LVGP hyperparameters. We conduct numerical studies comparing plug-in inference against fully Bayesian inference over a few engineering models and material design applications. In contrast to previous studies on standard GP modeling that have largely concluded that a fully Bayesian treatment offers limited improvements, our results show that for LVGP modeling it offers significant improvements in prediction accuracy and uncertainty quantification over the plug-in approach.
translated by 谷歌翻译
因果推理中的一个重要问题是分解治疗结果对不同因果途径的总效果,并量化每种途径中的因果效果。例如,在因果公平中,作为男性雇员的总效果(即治疗)构成了对年收入(即,结果)的直接影响,并通过员工的职业(即调解人)和间接效应。因果调解分析(CMA)是一个正式的统计框架,用于揭示这种潜在的因果机制。 CMA在观察研究中的一个主要挑战正在处理混淆,导致治疗,调解员和结果之间导致虚假因果关系的变量。常规方法假设暗示可以测量所有混血器的顺序忽略性,这在实践中通常是不可核法的。这项工作旨在规避严格的顺序忽略性假设,并考虑隐藏的混杂。借鉴代理策略和深度学习的最新进展,我们建议同时揭示特征隐藏混杂物的潜在变量,并估计因果效应。使用合成和半合成数据集的经验评估验证了所提出的方法的有效性。我们进一步展示了我们对因果公平分析的方法的潜力。
translated by 谷歌翻译
We consider the problem of dynamic pricing of a product in the presence of feature-dependent price sensitivity. Developing practical algorithms that can estimate price elasticities robustly, especially when information about no purchases (losses) is not available, to drive such automated pricing systems is a challenge faced by many industries. Based on the Poisson semi-parametric approach, we construct a flexible yet interpretable demand model where the price related part is parametric while the remaining (nuisance) part of the model is non-parametric and can be modeled via sophisticated machine learning (ML) techniques. The estimation of price-sensitivity parameters of this model via direct one-stage regression techniques may lead to biased estimates due to regularization. To address this concern, we propose a two-stage estimation methodology which makes the estimation of the price-sensitivity parameters robust to biases in the estimators of the nuisance parameters of the model. In the first-stage we construct estimators of observed purchases and prices given the feature vector using sophisticated ML estimators such as deep neural networks. Utilizing the estimators from the first-stage, in the second-stage we leverage a Bayesian dynamic generalized linear model to estimate the price-sensitivity parameters. We test the performance of the proposed estimation schemes on simulated and real sales transaction data from the Airline industry. Our numerical studies demonstrate that our proposed two-stage approach reduces the estimation error in price-sensitivity parameters from 25\% to 4\% in realistic simulation settings. The two-stage estimation techniques proposed in this work allows practitioners to leverage modern ML techniques to robustly estimate price-sensitivities while still maintaining interpretability and allowing ease of validation of its various constituent parts.
translated by 谷歌翻译
Missing data are ubiquitous in real world applications and, if not adequately handled, may lead to the loss of information and biased findings in downstream analysis. Particularly, high-dimensional incomplete data with a moderate sample size, such as analysis of multi-omics data, present daunting challenges. Imputation is arguably the most popular method for handling missing data, though existing imputation methods have a number of limitations. Single imputation methods such as matrix completion methods do not adequately account for imputation uncertainty and hence would yield improper statistical inference. In contrast, multiple imputation (MI) methods allow for proper inference but existing methods do not perform well in high-dimensional settings. Our work aims to address these significant methodological gaps, leveraging recent advances in neural network Gaussian process (NNGP) from a Bayesian viewpoint. We propose two NNGP-based MI methods, namely MI-NNGP, that can apply multiple imputations for missing values from a joint (posterior predictive) distribution. The MI-NNGP methods are shown to significantly outperform existing state-of-the-art methods on synthetic and real datasets, in terms of imputation error, statistical inference, robustness to missing rates, and computation costs, under three missing data mechanisms, MCAR, MAR, and MNAR.
translated by 谷歌翻译
Prognostication for lung cancer, a leading cause of mortality, remains a complex task, as it needs to quantify the associations of risk factors and health events spanning a patient's entire life. One challenge is that an individual's disease course involves non-terminal (e.g., disease progression) and terminal (e.g., death) events, which form semi-competing relationships. Our motivation comes from the Boston Lung Cancer Study, a large lung cancer survival cohort, which investigates how risk factors influence a patient's disease trajectory. Following developments in the prediction of time-to-event outcomes with neural networks, deep learning has become a focal area for the development of risk prediction methods in survival analysis. However, limited work has been done to predict multi-state or semi-competing risk outcomes, where a patient may experience adverse events such as disease progression prior to death. We propose a novel neural expectation-maximization algorithm to bridge the gap between classical statistical approaches and machine learning. Our algorithm enables estimation of the non-parametric baseline hazards of each state transition, risk functions of predictors, and the degree of dependence among different transitions, via a multi-task deep neural network with transition-specific sub-architectures. We apply our method to the Boston Lung Cancer Study and investigate the impact of clinical and genetic predictors on disease progression and mortality.
translated by 谷歌翻译
近年来,深度学习(DL)方法的流行程度大大增加。尽管在图像数据的分类和操纵中证明了其最初的成功,但DL方法应用于生物医学科学中的问题的应用已显着增长。但是,生物医学数据集中缺失数据的较高流行率和复杂性对DL方法提出了重大挑战。在这里,我们在变化自动编码器(VAE)的背景下提供了对缺失数据的正式处理,这是一种普遍用于缩小尺寸,插补和学习复杂数据的潜在表示的流行无监督的DL体系结构。我们提出了一种新的VAE架构Nimiwae,这是第一个在训练时在输入功能中灵活解释可忽视和不可忽视的缺失模式之一。训练后,可以从缺失数据的后验分布中得出样本,可用于多个插补,从而促进高维不完整数据集的下游分析。我们通过统计模拟证明,我们的方法优于无监督的学习任务和插定精度的现有方法。我们以与12,000名ICU患者有关的EHR数据集的案例研究结束,该数据集具有大量诊断测量和临床结果,其中仅观察到许多特征。
translated by 谷歌翻译