Real engineering and scientific applications often involve one or more qualitative inputs. Standard Gaussian processes (GPs), however, cannot directly accommodate qualitative inputs. The recently introduced latent variable Gaussian process (LVGP) overcomes this issue by first mapping each qualitative factor to underlying latent variables (LVs), and then uses any standard GP covariance function over these LVs. The LVs are estimated similarly to the other GP hyperparameters through maximum likelihood estimation, and then plugged into the prediction expressions. However, this plug-in approach will not account for uncertainty in estimation of the LVs, which can be significant especially with limited training data. In this work, we develop a fully Bayesian approach for the LVGP model and for visualizing the effects of the qualitative inputs via their LVs. We also develop approximations for scaling up LVGPs and fully Bayesian inference for the LVGP hyperparameters. We conduct numerical studies comparing plug-in inference against fully Bayesian inference over a few engineering models and material design applications. In contrast to previous studies on standard GP modeling that have largely concluded that a fully Bayesian treatment offers limited improvements, our results show that for LVGP modeling it offers significant improvements in prediction accuracy and uncertainty quantification over the plug-in approach.
translated by 谷歌翻译
多保真建模和校准是在工程设计中普遍出现的数据融合任务。在本文中,我们介绍了一种基于潜在地图高斯过程(LMGPS)的新方法,可实现高效准确的数据融合。在我们的方法中,我们将数据融合转换为潜在的空间学习问题,其中自动学习不同数据源之间的关系。这种转换赋予我们的方法具有有吸引力的优点,例如提高准确性,降低成本,灵活性,共同熔断任何数量的数据源,以及可视化数据源之间的相关性。该可视化允许用户通过拟合LMGP仅拟合到具有良好相关的数据源的子集的子集来检测模型形式误差或确定用于高保真仿真的最佳策略。我们还开发了一种新的内核功能,使LMGPS能够不仅构建概率的多保真代理,而且还具有高精度和一致性的估计参数。与现有技术相比,我们的方法的实施和使用易于更简单,更不容易出现数值问题。我们通过在广泛的示例中比较其对竞争方法的性能来证明基于LMGP的数据融合的好处。
translated by 谷歌翻译
数据驱动的设计显示了加速材料发现的希望,但由于搜索化学,结构和合成方法的庞大设计空间的高昂成本,这是具有挑战性的。贝叶斯优化(BO)采用不确定性的机器学习模型来选择有前途的设计来评估,从而降低成本。但是,在材料设计中特别感兴趣的具有混合数值和分类变量的BO尚未得到很好的研究。在这项工作中,我们调查了使用混合变量对机器学习的不确定性量化的常见主义者和贝叶斯方法。然后,我们使用来自每个组的流行代表模型,基于森林的LOLO模型(频繁主义者)和潜在的可变高斯过程模型(贝叶斯)进行了对BO中其表现的系统比较研究。我们研究了这两个模型在数学函数优化的功效以及结构和功能材料的特性,在其中我们观察到与问题维度和复杂性有关的性能差异。通过研究机器学习模型的预测性和不确定性估计功能,我们可以解释观察到的性能差异。我们的结果为在材料设计中的混合变量BO中选择频繁和贝叶斯不确定性的机器学习模型提供了实用的指导。
translated by 谷歌翻译
与常规的GPS相比,深层高斯工艺(DGP)提供了丰富的模型,可以更好地表示具有不同的机制或急剧变化的功能。在这项工作中,我们为计算机模型模拟的DGP提出了一种新颖的推理方法。通过随机归纳潜在层,我们的方法将DGP转换为链接的GP:为链接计算机模型系统开发的新型模拟器。这种转换允许有效的DGP培训程序,仅涉及常规GP的优化。此外,DGP模拟器的预测可以通过自然利用链接的GP仿真器的封闭形式的预测手段和方差来快速和分析性地进行。我们在一系列合成示例和经验应用中演示了该方法,并表明它是DGP替代推理的竞争候选者,将效率相结合,可与双随机的变异推理和不确定性量化相媲美,与完全巴约西亚方法相当。还生产了$ \ texttt {python} $ package $ \ texttt {dgpsi} $实现该方法并在https://github.com/mingdeyu/dgp上找到。
translated by 谷歌翻译
Surrogate models have shown to be an extremely efficient aid in solving engineering problems that require repeated evaluations of an expensive computational model. They are built by sparsely evaluating the costly original model and have provided a way to solve otherwise intractable problems. A crucial aspect in surrogate modelling is the assumption of smoothness and regularity of the model to approximate. This assumption is however not always met in reality. For instance in civil or mechanical engineering, some models may present discontinuities or non-smoothness, e.g., in case of instability patterns such as buckling or snap-through. Building a single surrogate model capable of accounting for these fundamentally different behaviors or discontinuities is not an easy task. In this paper, we propose a three-stage approach for the approximation of non-smooth functions which combines clustering, classification and regression. The idea is to split the space following the localized behaviors or regimes of the system and build local surrogates that are eventually assembled. A sequence of well-known machine learning techniques are used: Dirichlet process mixtures models (DPMM), support vector machines and Gaussian process modelling. The approach is tested and validated on two analytical functions and a finite element model of a tensile membrane structure.
translated by 谷歌翻译
The kernel function and its hyperparameters are the central model selection choice in a Gaussian proces (Rasmussen and Williams, 2006). Typically, the hyperparameters of the kernel are chosen by maximising the marginal likelihood, an approach known as Type-II maximum likelihood (ML-II). However, ML-II does not account for hyperparameter uncertainty, and it is well-known that this can lead to severely biased estimates and an underestimation of predictive uncertainty. While there are several works which employ a fully Bayesian characterisation of GPs, relatively few propose such approaches for the sparse GPs paradigm. In this work we propose an algorithm for sparse Gaussian process regression which leverages MCMC to sample from the hyperparameter posterior within the variational inducing point framework of Titsias (2009). This work is closely related to Hensman et al. (2015b) but side-steps the need to sample the inducing points, thereby significantly improving sampling efficiency in the Gaussian likelihood case. We compare this scheme against natural baselines in literature along with stochastic variational GPs (SVGPs) along with an extensive computational analysis.
translated by 谷歌翻译
高斯过程(GP),其结合了分类和连续输入变量模型已发现使用例如在纵向数据分析和计算机实验。然而,对于这些模型标准推理具有典型的立方缩放,并且不能应用于GPS共可扩展近似方案自协方差函数是不连续的。在这项工作中,我们导出用于混合域协方差函数,其中对于观察和基函数总数的数量成线性比例的基础函数近似方案。所提出的方法自然是适用于GP贝叶斯回归任意观测模型。我们证明在纵向数据建模上下文和显示的方法,它精确地近似于确切GP模型,只需要一个比较拟合对应精确模型运行时间的几分之一。
translated by 谷歌翻译
标准GPS为行为良好的流程提供了灵活的建模工具。然而,预计与高斯的偏差有望在现实世界数据集中出现,结构异常值和冲击通常会观察到。在这些情况下,GP可能无法充分建模不确定性,并且可能会过度推动。在这里,我们将GP框架扩展到一类新的时间变化的GP,从而可以直接建模重尾非高斯行为,同时通过非均匀GPS表示的无限混合物保留了可拖动的条件GP结构。有条件的GP结构是通过在潜在转化的输入空间上调节观测值来获得的,并使用L \'{e} Vy过程对潜在转化的随机演变进行建模,该过程允许贝叶斯在后端预测密度和潜在转化中的贝叶斯推断功能。我们为该模型提供了马尔可夫链蒙特卡洛推理程序,并证明了与标准GP相比的潜在好处。
translated by 谷歌翻译
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
translated by 谷歌翻译
在不断努力提高产品质量和降低运营成本中,越来越多地部署计算建模以确定产品设计或配置的可行性。通过本地模型代理这些计算机实验的建模,仅考虑短程交互,诱导稀疏性,可以解决复杂输入输出关系的巨大分析。然而,缩小到地方规模的重点意味着必须一遍又一遍地重新学习全球趋势。在本文中,我们提出了一种框架,用于将来自全局敏感性分析的信息纳入代理模型作为输入旋转和重新扫描预处理步骤。我们讨论了基于内核回归的几个敏感性分析方法的关系在描述它们如何产生输入变量的转换之前。具体而言,我们执行输入扭曲,使得“翘曲模拟器”对所有输入方向同样敏感,释放本地模型以专注于本地动态。观测数据和基准测试功能的数值实验,包括来自汽车行业的高维计算机模拟器,提供了实证验证。
translated by 谷歌翻译
使用马尔可夫链蒙特卡洛(Monte Carlo)以贝叶斯方式将理论模型拟合到实验数据中,通常需要一个评估数千(或数百万)型的型号。当模型是慢速到计算的物理模拟时,贝叶斯模型拟合就变得不可行。为了解决这个问题,可以使用模拟输出的第二个统计模型,该模型可以用来代替模型拟合期间的完整仿真。选择的典型仿真器是高斯过程(GP),这是一种灵活的非线性模型,在每个输入点提供了预测均值和方差。高斯流程回归对少量培训数据($ n <10^3 $)非常有效,但是当数据集大小变大时,训练和用于预测的速度慢。可以使用各种方法来加快中高级数据集制度($ n> 10^5 $)的加快高斯流程,从而使人们的预测准确性大大降低了。这项工作研究了几种近似高斯过程模型的准确度折叠 - 稀疏的变异GP,随机变异GP和深内核学习的GP - 在模拟密度功能理论(DFT)模型的预测时。此外,我们使用模拟器以贝叶斯的方式校准DFT模型参数,使用观察到的数据,解决数据集大小所施加的计算屏障,并将校准结果与先前的工作进行比较。这些校准的DFT模型的实用性是根据观察到的数据对实验意义的核素的性质进行预测,例如超重核。
translated by 谷歌翻译
风电场设计主要取决于风力涡轮机唤醒流向大气风条件的可变性,以及唤醒之间的相互作用。使用高保真度捕获唤醒流场的物理学模型是计算风电场的布局优化的计算非常昂贵,因此数据驱动的减少的订单模型可以代表模拟风电场的有效替代方案。在这项工作中,我们使用现实世界的光检测和测量(LIDAR)测量的风力涡轮机唤醒,用机器学习构建预测代理模型。具体而言,我们首先展示使用深度自动控制器来找到低维\ emph {潜在}空间,其给出了唤醒激光雷达测量的计算易逼近的近似。然后,我们学习使用深神经网络的参数空间和(潜在空间)唤醒流场之间的映射。此外,我们还展示了使用概率机器学习技术,即高斯过程建模,除了数据中的认知和炼拉内不确定性之外,学习参数空间潜空间映射。最后,为了应对培训大型数据集,我们展示了使用变分高斯过程模型,为大型数据集提供了传统的高斯工艺模型的传统高斯工艺模型。此外,我们介绍了主动学习以自适应地构建和改进传统的高斯过程模型预测能力。总的来说,我们发现我们的方法提供了风力涡轮机唤醒流场的准确近似,其可以以比具有基于高保真物理的模拟产生的级别更便宜的成本来查询。
translated by 谷歌翻译
回归模型用于各种应用,为来自不同领域的研究人员提供强大的科学工具。线性或简单的参数,模型通常不足以描述输入变量与响应之间的复杂关系。通过诸如神经网络的灵活方法可以更好地描述这种关系,但这导致不太可解释的模型和潜在的过度装备。或者,可以使用特定的参数非线性函数,但是这种功能的规范通常是复杂的。在本文中,我们介绍了一种灵活的施工方法,高度灵活的非线性参数回归模型。非线性特征是分层的,类似于深度学习,但对要考虑的可能类型的功能具有额外的灵活性。这种灵活性,与变量选择相结合,使我们能够找到一小部分重要特征,从而可以更具可解释的模型。在可能的功能的空间内,考虑了贝叶斯方法,基于它们的复杂性引入功能的前沿。采用遗传修改模式跳跃马尔可夫链蒙特卡罗算法来执行贝叶斯推理和估计模型平均的后验概率。在各种应用中,我们说明了我们的方法如何用于获得有意义的非线性模型。此外,我们将其预测性能与多个机器学习算法进行比较。
translated by 谷歌翻译
由于其数据效率,贝叶斯优化已经出现在昂贵的黑盒优化的最前沿。近年来,关于新贝叶斯优化算法及其应用的发展的研究激增。因此,本文试图对贝叶斯优化的最新进展进行全面和更新的调查,并确定有趣的开放问题。我们将贝叶斯优化的现有工作分为九个主要群体,并根据所提出的算法的动机和重点。对于每个类别,我们介绍了替代模型的构建和采集功能的适应的主要进步。最后,我们讨论了开放的问题,并提出了有希望的未来研究方向,尤其是在分布式和联合优化系统中的异质性,隐私保护和公平性方面。
translated by 谷歌翻译
贝叶斯优化(BO)被广泛用于优化随机黑匣子功能。尽管大多数BO方法都集中在优化条件期望上,但许多应用程序都需要规避风险的策略,并且需要考虑分配尾巴的替代标准。在本文中,我们提出了针对贝叶斯分位数和预期回归的新变异模型,这些模型非常适合异形的噪声设置。我们的模型分别由有条件分位数(或期望)的两个潜在高斯过程和不对称可能性函数的比例参数组成。此外,我们提出了基于最大值熵搜索和汤普森采样的两种BO策略,这些策略是针对此类型号量身定制的,可以容纳大量点。与现有的BO进行规避风险优化的方法相反,我们的策略可以直接针对分位数和预期进行优化,而无需复制观测值或假设噪声的参数形式。如实验部分所示,所提出的方法清楚地表现出异质的非高斯案例中的最新状态。
translated by 谷歌翻译
封闭曲线的建模和不确定性量化是形状分析领域的重要问题,并且可以对随后的统计任务产生重大影响。这些任务中的许多涉及封闭曲线的集合,这些曲线通常在多个层面上表现出结构相似性。以有效融合这种曲线间依赖性的方式对多个封闭曲线进行建模仍然是一个具有挑战性的问题。在这项工作中,我们提出并研究了一个多数输出(又称多输出),多维高斯流程建模框架。我们说明了提出的方法学进步,并在几个曲线和形状相关的任务上证明了有意义的不确定性量化的实用性。这种基于模型的方法不仅解决了用内核构造对封闭曲线(及其形状)的推断问题,而且还为通常对功能对象的多层依赖性的非参数建模打开了门。
translated by 谷歌翻译
We provide a new unifying view, including all existing proper probabilistic sparse approximations for Gaussian process regression. Our approach relies on expressing the effective prior which the methods are using. This allows new insights to be gained, and highlights the relationship between existing methods. It also allows for a clear theoretically justified ranking of the closeness of the known approximations to the corresponding full GPs. Finally we point directly to designs of new better sparse approximations, combining the best of the existing strategies, within attractive computational constraints.
translated by 谷歌翻译
高斯工艺(GPS)模型是具有由内核功能控制的电感偏差的功能丰富的分布。通过使用边际似然作为目标优化内核超参数来实现学习。这种称为II类型最大似然(ML-II)的经典方法产生了高参数的点估计,并继续成为培训GPS的默认方法。然而,这种方法在低估预测不确定性并且易于在有许多近似数目时易于过度拟合。此外,基于梯度的优化使ML-II点估计高度易受局部最小值的存在。这项工作提出了一种替代的学习过程,其中核心函数的超参数使用嵌套采样(NS)被边缘化,这是一种非常适合于复杂的多模态分布来采样的技术。我们专注于具有频谱混合物(SM)粒子的回归任务,并发现定量模型不确定性的原则方法导致在一系列合成和基准数据集中的预测性能中的大量收益。在这种情况下,还发现嵌套的抽样在汉密尔顿蒙特卡罗(HMC)上提供了速度优势,广泛认为是基于MCMC推断的金标准。
translated by 谷歌翻译
受数据驱动的超材料设计的启发,该设计范围已成为一种引人注目的范式,可以释放多尺度体系结构的潜力。然而,以模型为中心的研究趋势缺乏专门用于数据获取的原则性框架,其质量传播到下游任务。通常是由天真的空间填充设计在形状描述符空间中建造的,具有高度不平衡或与感兴趣的设计任务相矛盾的属性分布。为此,我们提出了T-Metaset:一个基于积极学习的数据采集框架,旨在指导多样化和任务感知的数据生成。显然,我们在数据驱动的超材料设计的早期阶段寻求解决方案,但经常被忽视的场景:当已经准备了一个纯属性(〜O(10^4))纯形状的库时,没有评估属性。关键的想法是利用从生成模型中学到的数据驱动的形状描述符,适合稀疏回归器作为启动代理商,并利用与多样性相关的指标,以将数据获取推向帮助设计师实现设计目标的领域。我们在三种部署案例中验证了所提出的框架,其中包括一般使用,特定于任务的使用和可量身定制的使用。两个大规模的机械超材料数据集用于证明功效。 T-Metaset适用于基于图像的一般设计表示,可以提高数据驱动设计的未来进步。
translated by 谷歌翻译
我们提出了一种新的非参数混合物模型,用于多变量回归问题,灵感来自概率K-Nearthimest邻居算法。使用有条件指定的模型,对样本外输入的预测基于与每个观察到的数据点的相似性,从而产生高斯混合物表示的预测分布。在混合物组件的参数以及距离度量标准的参数上,使用平均场变化贝叶斯算法进行后推断,并具有基于随机梯度的优化过程。在与数据大小相比,输入 - 输出关系很复杂,预测分布可能偏向或多模式的情况下,输入相对较高的尺寸,该方法尤其有利。对五个数据集进行的计算研究,其中两个是合成生成的,这说明了我们的高维输入的专家混合物方法的明显优势,在验证指标和视觉检查方面都优于竞争者模型。
translated by 谷歌翻译