高斯过程(GP),其结合了分类和连续输入变量模型已发现使用例如在纵向数据分析和计算机实验。然而,对于这些模型标准推理具有典型的立方缩放,并且不能应用于GPS共可扩展近似方案自协方差函数是不连续的。在这项工作中,我们导出用于混合域协方差函数,其中对于观察和基函数总数的数量成线性比例的基础函数近似方案。所提出的方法自然是适用于GP贝叶斯回归任意观测模型。我们证明在纵向数据建模上下文和显示的方法,它精确地近似于确切GP模型,只需要一个比较拟合对应精确模型运行时间的几分之一。
translated by 谷歌翻译
多维时空数据的概率建模对于许多现实世界应用至关重要。然而,现实世界时空数据通常表现出非平稳性的复杂依赖性,即相关结构随位置/时间而变化,并且在空间和时间之间存在不可分割的依赖性,即依赖关系。开发有效和计算有效的统计模型,以适应包含远程和短期变化的非平稳/不可分割的过程,成为一项艰巨的任务,尤其是对于具有各种腐败/缺失结构的大规模数据集。在本文中,我们提出了一个新的统计框架 - 贝叶斯互补内核学习(BCKL),以实现多维时空数据的可扩展概率建模。为了有效地描述复杂的依赖性,BCKL与短距离时空高斯过程(GP)相结合的内核低级分解(GP),其中两个组件相互补充。具体而言,我们使用多线性低级分组组件来捕获数据中的全局/远程相关性,并基于紧凑的核心函数引入加法短尺度GP,以表征其余的局部变异性。我们为模型推断开发了有效的马尔可夫链蒙特卡洛(MCMC)算法,并在合成和现实世界时空数据集上评估了所提出的BCKL框架。我们的结果证实了BCKL在提供准确的后均值和高质量不确定性估计方面的出色表现。
translated by 谷歌翻译
高斯进程(GPS)是非参数贝叶斯模型,广泛用于各种预测任务。以前的工作在通过差异隐私(DP)向GPS增加了强大的隐私保护,仅限于仅保护预测目标的隐私(模型输出)而不是输入。我们通过为模型输入和输出引入DP保护而引入GPS来打破此限制。我们通过使用稀疏GP方法来实现这一目标,并在已知的诱导点上发布私有变分近似。近似协方差调整到大约占DP噪声的增加的不确定性。近似可用于使用标准稀疏GP技术计算任意预测。我们提出了一种使用应用于验证设置日志可能性的私有选择协议的超参数学习方法。我们的实验表明,考虑到足够量的数据,该方法可以在强大的隐私保护下产生准确的模型。
translated by 谷歌翻译
高斯流程是许多灵活的统计和机器学习模型的关键组成部分。但是,由于需要倒转和存储完整的协方差矩阵,它们表现出立方计算的复杂性和高内存约束。为了解决这个问题,已经考虑了高斯流程专家的混合物,其中数据点被分配给独立专家,从而通过允许基于较小的局部协方差矩阵来降低复杂性。此外,高斯流程专家的混合物大大富含模型的灵活性,从而允许诸如非平稳性,异方差和不连续性等行为。在这项工作中,我们基于嵌套的蒙特卡洛采样器构建了一种新颖的推理方法,以同时推断门控网络和高斯工艺专家参数。与重要性采样相比,这大大改善了推断,尤其是在固定高斯流程不合适的情况下,同时仍然完全平行。
translated by 谷歌翻译
许多机器学习问题可以在估计功能的背景下构成,并且通常是时间依赖的功能,随着观察结果的到来,这些功能是实时估计的。高斯工艺(GPS)是建模实现非线性函数的吸引人选择,这是由于其灵活性和不确定性定量。但是,典型的GP回归模型有几个缺点:1)相对于观测值的常规GP推理量表$ O(n^{3})$; 2)顺序更新GP模型并非微不足道; 3)协方差内核通常在该函数上执行平稳性约束,而具有非平稳协方差内核的GP通常在实践中使用了很难使用。为了克服这些问题,我们提出了一种顺序的蒙特卡洛算法,以适合GP的无限混合物,这些混合物捕获非平稳行为,同时允许在线分布式推理。我们的方法从经验上改善了在时间序列数据中存在非平稳性的在线GP估计的最先进方法的性能。为了证明我们在应用设置中提出的在线高斯流程混合物方法的实用性,我们表明我们可以使用在线高斯工艺匪徒成功实现优化算法。
translated by 谷歌翻译
Real engineering and scientific applications often involve one or more qualitative inputs. Standard Gaussian processes (GPs), however, cannot directly accommodate qualitative inputs. The recently introduced latent variable Gaussian process (LVGP) overcomes this issue by first mapping each qualitative factor to underlying latent variables (LVs), and then uses any standard GP covariance function over these LVs. The LVs are estimated similarly to the other GP hyperparameters through maximum likelihood estimation, and then plugged into the prediction expressions. However, this plug-in approach will not account for uncertainty in estimation of the LVs, which can be significant especially with limited training data. In this work, we develop a fully Bayesian approach for the LVGP model and for visualizing the effects of the qualitative inputs via their LVs. We also develop approximations for scaling up LVGPs and fully Bayesian inference for the LVGP hyperparameters. We conduct numerical studies comparing plug-in inference against fully Bayesian inference over a few engineering models and material design applications. In contrast to previous studies on standard GP modeling that have largely concluded that a fully Bayesian treatment offers limited improvements, our results show that for LVGP modeling it offers significant improvements in prediction accuracy and uncertainty quantification over the plug-in approach.
translated by 谷歌翻译
Many scientific problems require identifying a small set of covariates that are associated with a target response and estimating their effects. Often, these effects are nonlinear and include interactions, so linear and additive methods can lead to poor estimation and variable selection. Unfortunately, methods that simultaneously express sparsity, nonlinearity, and interactions are computationally intractable -- with runtime at least quadratic in the number of covariates, and often worse. In the present work, we solve this computational bottleneck. We show that suitable interaction models have a kernel representation, namely there exists a "kernel trick" to perform variable selection and estimation in $O$(# covariates) time. Our resulting fit corresponds to a sparse orthogonal decomposition of the regression function in a Hilbert space (i.e., a functional ANOVA decomposition), where interaction effects represent all variation that cannot be explained by lower-order effects. On a variety of synthetic and real data sets, our approach outperforms existing methods used for large, high-dimensional data sets while remaining competitive (or being orders of magnitude faster) in runtime.
translated by 谷歌翻译
潜在位置网络模型是网络科学的多功能工具;应用程序包括集群实体,控制因果混淆,并在未观察的图形上定义前提。估计每个节点的潜在位置通常是贝叶斯推理问题的群体,吉布斯内的大都市是最流行的近似后分布的工具。然而,众所周知,GIBBS内的大都市对于大型网络而言是低效;接受比计算成本昂贵,并且所得到的后绘高度相关。在本文中,我们提出了一个替代的马尔可夫链蒙特卡罗战略 - 使用分裂哈密顿蒙特卡罗和萤火虫蒙特卡罗的组合定义 - 利用后部分布的功能形式进行更有效的后退计算。我们展示了这些战略在吉布斯和综合网络上的其他算法中优于大都市,以及学区的教师和工作人员的真正信息共享网络。
translated by 谷歌翻译
使用马尔可夫链蒙特卡洛(Monte Carlo)以贝叶斯方式将理论模型拟合到实验数据中,通常需要一个评估数千(或数百万)型的型号。当模型是慢速到计算的物理模拟时,贝叶斯模型拟合就变得不可行。为了解决这个问题,可以使用模拟输出的第二个统计模型,该模型可以用来代替模型拟合期间的完整仿真。选择的典型仿真器是高斯过程(GP),这是一种灵活的非线性模型,在每个输入点提供了预测均值和方差。高斯流程回归对少量培训数据($ n <10^3 $)非常有效,但是当数据集大小变大时,训练和用于预测的速度慢。可以使用各种方法来加快中高级数据集制度($ n> 10^5 $)的加快高斯流程,从而使人们的预测准确性大大降低了。这项工作研究了几种近似高斯过程模型的准确度折叠 - 稀疏的变异GP,随机变异GP和深内核学习的GP - 在模拟密度功能理论(DFT)模型的预测时。此外,我们使用模拟器以贝叶斯的方式校准DFT模型参数,使用观察到的数据,解决数据集大小所施加的计算屏障,并将校准结果与先前的工作进行比较。这些校准的DFT模型的实用性是根据观察到的数据对实验意义的核素的性质进行预测,例如超重核。
translated by 谷歌翻译
贝叶斯正交(BQ)是一种解决贝叶斯方式中数值集成问题的方法,允许用户量化其对解决方案的不确定性。 BQ的标准方法基于Intains的高斯过程(GP)近似。结果,BQ本质上仅限于可以以有效的方式完成GP近似的情况,因此通常禁止非常高维或非平滑的目标功能。本文提出使用基于贝叶斯添加剂回归树(BART)前锋的新的贝叶斯数值集成算法来解决这个问题,我们调用Bart-Int。 BART Priors易于调整,适合不连续的功能。我们证明它们在顺序设计环境中,它们也会自然地借给自己,并且可以在各种设置中获得显式收敛速率。这种新方法的优点和缺点在包括Genz功能的一组基准测试和贝叶斯调查设计问题上突出显示。
translated by 谷歌翻译
We provide a new unifying view, including all existing proper probabilistic sparse approximations for Gaussian process regression. Our approach relies on expressing the effective prior which the methods are using. This allows new insights to be gained, and highlights the relationship between existing methods. It also allows for a clear theoretically justified ranking of the closeness of the known approximations to the corresponding full GPs. Finally we point directly to designs of new better sparse approximations, combining the best of the existing strategies, within attractive computational constraints.
translated by 谷歌翻译
高斯流程(GPS)实际应用的主要挑战是选择适当的协方差函数。 GPS的移动平均值或过程卷积的构建可以提供一些额外的灵活性,但仍需要选择合适的平滑核,这是非平凡的。以前的方法通过在平滑内核上使用GP先验,并通过扩展协方差来构建协方差函数,以绕过预先指定它的需求。但是,这样的模型在几种方面受到限制:它们仅限于单维输入,例如时间;它们仅允许对单个输出进行建模,并且由于推理并不简单,因此不会扩展到大型数据集。在本文中,我们引入了GPS的非参数过程卷积公式,该公式通过使用基于Matheron规则的功能采样方法来减轻这些弱点,以使用诱导变量的间域间采样进行快速采样。此外,我们提出了这些非参数卷积的组成,可作为经典深度GP模型的替代方案,并允许从数据中推断中间层的协方差函数。我们测试了单个输出GP,多个输出GPS和DEEP GPS在基准测试上的模型性能,并发现在许多情况下,我们的方法可以提供比标准GP模型的改进。
translated by 谷歌翻译
我们介绍了Hida-Mat'Ern内核的班级,这是整个固定式高斯 - 马尔可夫流程的整个空间的规范家庭协方差。它在垫子内核上延伸,通过允许灵活地构造具有振荡组件的过程。任何固定内核,包括广泛使用的平方指数和光谱混合核,要么直接在该类内,也是适当的渐近限制,展示了该类的一般性。利用其Markovian Nature,我们展示了如何仅使用内核及其衍生物来代表状态空间模型的过程。反过来,这使我们能够更有效地执行高斯工艺推论,并且侧面通常计算负担。我们还表明,除了进一步减少计算复杂性之外,我们还显示了如何利用状态空间表示的特殊属性。
translated by 谷歌翻译
标准GPS为行为良好的流程提供了灵活的建模工具。然而,预计与高斯的偏差有望在现实世界数据集中出现,结构异常值和冲击通常会观察到。在这些情况下,GP可能无法充分建模不确定性,并且可能会过度推动。在这里,我们将GP框架扩展到一类新的时间变化的GP,从而可以直接建模重尾非高斯行为,同时通过非均匀GPS表示的无限混合物保留了可拖动的条件GP结构。有条件的GP结构是通过在潜在转化的输入空间上调节观测值来获得的,并使用L \'{e} Vy过程对潜在转化的随机演变进行建模,该过程允许贝叶斯在后端预测密度和潜在转化中的贝叶斯推断功能。我们为该模型提供了马尔可夫链蒙特卡洛推理程序,并证明了与标准GP相比的潜在好处。
translated by 谷歌翻译
与高斯过程(GPS)的变异近似通常使用一组诱导点来形成与协方差矩阵的低级别近似值。在这项工作中,我们相反利用了精度矩阵的稀疏近似。我们提出了差异最近的邻居高斯工艺(VNNGP),该过程引入了先验,该过程仅保留在k最近的邻居观测中的相关性,从而诱导稀疏精度结构。使用变分框架,可以将VNNGP的目标分解在观测值和诱导点上,从而以O($ k^3 $)的时间复杂性实现随机优化。因此,我们可以任意扩展诱导点大小,甚至可以在每个观察到的位置放置诱导点。我们通过各种实验将VNNGP与其他可扩展的GP进行比较,并证明VNNGP(1)可以极大地超过低级别方法,而(2)比其他最近的邻居方法较不适合过度拟合。
translated by 谷歌翻译
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
translated by 谷歌翻译
The kernel function and its hyperparameters are the central model selection choice in a Gaussian proces (Rasmussen and Williams, 2006). Typically, the hyperparameters of the kernel are chosen by maximising the marginal likelihood, an approach known as Type-II maximum likelihood (ML-II). However, ML-II does not account for hyperparameter uncertainty, and it is well-known that this can lead to severely biased estimates and an underestimation of predictive uncertainty. While there are several works which employ a fully Bayesian characterisation of GPs, relatively few propose such approaches for the sparse GPs paradigm. In this work we propose an algorithm for sparse Gaussian process regression which leverages MCMC to sample from the hyperparameter posterior within the variational inducing point framework of Titsias (2009). This work is closely related to Hensman et al. (2015b) but side-steps the need to sample the inducing points, thereby significantly improving sampling efficiency in the Gaussian likelihood case. We compare this scheme against natural baselines in literature along with stochastic variational GPs (SVGPs) along with an extensive computational analysis.
translated by 谷歌翻译
宽度限制最近是深度学习研究的焦点:模数计算实用,做更广泛的网络优于较窄的网络?当传统网络增益具有宽度的代表性,潜在掩盖任何负面影响,回答这个问题一直在具有挑战性。我们在本文中的分析通过神经网络的概括到深层高斯过程(深GP),一类非参数分层模型,占据了神经网络的非参数分层模型。在这样做时,我们的目标是了解一旦对给定建模任务的容量足够的容量,才能了解宽度(标准)神经网络。我们深入GP的理论和经验结果表明,大宽度可能对等级模型有害。令人惊讶的是,我们证明了甚至非参数的深GP融合到高斯过程,实际上变得浅薄而没有任何代表性的力量。对应于数据适应性基本函数的混合的后后,与宽度变得较小。我们的尾部分析表明,宽度和深度具有相反的影响:深度突出了模型的非高斯,而宽度使模型越来越高斯。我们发现有一个“甜蜜点”,可以在限制GP行为防止适应性之前最大化测试性能,以宽度= 1或宽度= 2用于非参数深GP。这些结果对具有L2正规化训练的传统神经网络中的相同现象(类似于参数的高斯),使得这种神经网络可能需要多达500至1000个隐藏单元的现象,以获得足够的容量 - 取决于数据集 - 但进一步的宽度降低了性能。
translated by 谷歌翻译
We introduce scalable deep kernels, which combine the structural properties of deep learning architectures with the non-parametric flexibility of kernel methods. Specifically, we transform the inputs of a spectral mixture base kernel with a deep architecture, using local kernel interpolation, inducing points, and structure exploiting (Kronecker and Toeplitz) algebra for a scalable kernel representation. These closed-form kernels can be used as drop-in replacements for standard kernels, with benefits in expressive power and scalability. We jointly learn the properties of these kernels through the marginal likelihood of a Gaussian process. Inference and learning cost O(n) for n training points, and predictions cost O(1) per test point. On a large and diverse collection of applications, including a dataset with 2 million examples, we show improved performance over scalable Gaussian processes with flexible kernel learning models, and stand-alone deep architectures.
translated by 谷歌翻译
高斯工艺(GPS)是高度表达的概率模型。一个主要的限制是他们的计算复杂性。天真,精确的GP推理需要$ \ MATHCAL {o}(n^3)$计算$ n $表示建模点的数量。当前克服此限制的方法分别依赖于数据或内核的稀疏,结构化或随机表示形式,并且通常涉及嵌套的优化以评估GP。我们提出了一种名为迭代图表改进(ICR)的新的,生成的方法,以在$ \ Mathcal {o}(n)$ ntive ntime ntime ntime ntake ntige内核中衰减内核,而无需嵌套优化的时间。 ICR通过将不同分辨率的建模位置的视图与用户提供的坐标图组合在一起,代表长期和短距离相关性。在我们对两个数量级的间距有所不同的点的实验中,ICR的准确性与最新的GP方法相当。 ICR在CPU和GPU上以一个数量级的计算速度来优于现有方法,并且已经成功地应用于具有122亿美元参数的GP模型。
translated by 谷歌翻译