因果推理中的一个重要问题是分解治疗结果对不同因果途径的总效果,并量化每种途径中的因果效果。例如,在因果公平中,作为男性雇员的总效果(即治疗)构成了对年收入(即,结果)的直接影响,并通过员工的职业(即调解人)和间接效应。因果调解分析(CMA)是一个正式的统计框架,用于揭示这种潜在的因果机制。 CMA在观察研究中的一个主要挑战正在处理混淆,导致治疗,调解员和结果之间导致虚假因果关系的变量。常规方法假设暗示可以测量所有混血器的顺序忽略性,这在实践中通常是不可核法的。这项工作旨在规避严格的顺序忽略性假设,并考虑隐藏的混杂。借鉴代理策略和深度学习的最新进展,我们建议同时揭示特征隐藏混杂物的潜在变量,并估计因果效应。使用合成和半合成数据集的经验评估验证了所提出的方法的有效性。我们进一步展示了我们对因果公平分析的方法的潜力。
translated by 谷歌翻译
Learning individual-level causal effects from observational data, such as inferring the most effective medication for a specific patient, is a problem of growing importance for policy makers. The most important aspect of inferring causal effects from observational data is the handling of confounders, factors that affect both an intervention and its outcome. A carefully designed observational study attempts to measure all important confounders. However, even if one does not have direct access to all confounders, there may exist noisy and uncertain measurement of proxies for confounders. We build on recent advances in latent variable modeling to simultaneously estimate the unknown latent space summarizing the confounders and the causal effect. Our method is based on Variational Autoencoders (VAE) which follow the causal structure of inference with proxies. We show our method is significantly more robust than existing methods, and matches the state-of-the-art on previous benchmarks focused on individual treatment effects.
translated by 谷歌翻译
在广泛的任务中,在包括医疗处理,广告和营销和政策制定的发​​展中,对观测数据进行因果推断非常有用。使用观察数据进行因果推断有两种重大挑战:治疗分配异质性(\ Texit {IE},治疗和未经处理的群体之间的差异),并且没有反事实数据(\ TEXTIT {IE},不知道是什么已经发生了,如果确实得到治疗的人,反而尚未得到治疗)。通过组合结构化推论和有针对性的学习来解决这两个挑战。在结构方面,我们将联合分布分解为风险,混淆,仪器和杂项因素,以及在目标学习方面,我们应用来自影响曲线的规则器,以减少残余偏差。进行了一项消融研究,对基准数据集进行评估表明,TVAE具有竞争力和最先进的艺术表现。
translated by 谷歌翻译
解决公平问题对于安全使用机器学习算法来支持对人们的生活产生关键影响的决策,例如雇用工作,儿童虐待,疾病诊断,贷款授予等。过去十年,例如统计奇偶校验和均衡的赔率。然而,最新的公平概念是基于因果关系的,反映了现在广泛接受的想法,即使用因果关系对于适当解决公平问题是必要的。本文研究了基于因果关系的公平概念的详尽清单,并研究了其在现实情况下的适用性。由于大多数基于因果关系的公平概念都是根据不可观察的数量(例如干预措施和反事实)来定义的,因此它们在实践中的部署需要使用观察数据来计算或估计这些数量。本文提供了有关从观察数据(包括可识别性(Pearl的SCM框架))和估计(潜在结果框架)中推断出因果量的不同方法的全面报告。该调查论文的主要贡献是(1)指南,旨在在特定的现实情况下帮助选择合适的公平概念,以及(2)根据Pearl的因果关系阶梯的公平概念的排名,表明它很难部署。实践中的每个概念。
translated by 谷歌翻译
训练因果效果变分性自身摩托(CEVAE)以预测给定的观察治疗数据的结果,而使用重要性采样均匀的处理分布训练均匀治疗变分性自身培训(UTVAE)。在本文中,我们表明,通过减轻训练训练以测试时间发生的分布换档,使用对观察治疗分布的均匀处理导致更好的因果化推断。我们还探讨了统一和观察治疗分布的组合,推断和生成网络培训目标,以找到更好的培训程序,用于推断治疗效果。实验,我们发现所提出的Utvae在综合效应误差估计比Sycleiny和IHDP数据集上的CEVAE估计的估计是更好的绝对平均处理效果误差和精度。
translated by 谷歌翻译
因果推断能够估计治疗效果(即,治疗结果的因果效果),使各个领域的决策受益。本研究中的一个基本挑战是观察数据的治疗偏见。为了提高对因果推断的观察研究的有效性,基于代表的方法作为最先进的方法表明了治疗效果估计的卓越性能。基于大多数基于表示的方法假设所有观察到的协变量都是预处理的(即,不受治疗影响的影响),并学习这些观察到的协变量的平衡表示,以估算治疗效果。不幸的是,这种假设往往在实践中往往是太严格的要求,因为一些协调因子是通过对治疗的干预进行改变(即,后治疗)来改变。相比之下,从不变的协变量中学到的平衡表示因此偏置治疗效果估计。
translated by 谷歌翻译
Causal inference is the process of using assumptions, study designs, and estimation strategies to draw conclusions about the causal relationships between variables based on data. This allows researchers to better understand the underlying mechanisms at work in complex systems and make more informed decisions. In many settings, we may not fully observe all the confounders that affect both the treatment and outcome variables, complicating the estimation of causal effects. To address this problem, a growing literature in both causal inference and machine learning proposes to use Instrumental Variables (IV). This paper serves as the first effort to systematically and comprehensively introduce and discuss the IV methods and their applications in both causal inference and machine learning. First, we provide the formal definition of IVs and discuss the identification problem of IV regression methods under different assumptions. Second, we categorize the existing work on IV methods into three streams according to the focus on the proposed methods, including two-stage least squares with IVs, control function with IVs, and evaluation of IVs. For each stream, we present both the classical causal inference methods, and recent developments in the machine learning literature. Then, we introduce a variety of applications of IV methods in real-world scenarios and provide a summary of the available datasets and algorithms. Finally, we summarize the literature, discuss the open problems and suggest promising future research directions for IV methods and their applications. We also develop a toolkit of IVs methods reviewed in this survey at https://github.com/causal-machine-learning-lab/mliv.
translated by 谷歌翻译
作为因果推断中的重要问题,我们讨论了治疗效果(TES)的估计。代表混淆器作为潜在的变量,我们提出了完整的VAE,这是一个变形AutoEncoder(VAE)的新变种,其具有足以识别TES的预后分数的动机。我们的VAE也自然地提供了使用其之前用于治疗组的陈述。(半)合成数据集的实验显示在各种环境下的最先进的性能,包括不观察到的混淆。基于我们模型的可识别性,我们在不协调下证明TES的识别,并讨论(可能)扩展到更难的设置。
translated by 谷歌翻译
Although understanding and characterizing causal effects have become essential in observational studies, it is challenging when the confounders are high-dimensional. In this article, we develop a general framework $\textit{CausalEGM}$ for estimating causal effects by encoding generative modeling, which can be applied in both binary and continuous treatment settings. Under the potential outcome framework with unconfoundedness, we establish a bidirectional transformation between the high-dimensional confounders space and a low-dimensional latent space where the density is known (e.g., multivariate normal distribution). Through this, CausalEGM simultaneously decouples the dependencies of confounders on both treatment and outcome and maps the confounders to the low-dimensional latent space. By conditioning on the low-dimensional latent features, CausalEGM can estimate the causal effect for each individual or the average causal effect within a population. Our theoretical analysis shows that the excess risk for CausalEGM can be bounded through empirical process theory. Under an assumption on encoder-decoder networks, the consistency of the estimate can be guaranteed. In a series of experiments, CausalEGM demonstrates superior performance over existing methods for both binary and continuous treatments. Specifically, we find CausalEGM to be substantially more powerful than competing methods in the presence of large sample sizes and high dimensional confounders. The software of CausalEGM is freely available at https://github.com/SUwonglab/CausalEGM.
translated by 谷歌翻译
在线评论使消费者能够与公司聘用并提供重要的反馈。由于高维文本的复杂性,这些评论通常被简化为单一数值分数,例如评级或情绪评分。这项工作经验检查了用户生成的在线评论的因果效果对粒度水平:我们考虑多个方面,例如餐厅的食品和服务。了解消费者对不同方面的意见可以帮助详细评估业务绩效并有效地战略业务运营。具体来说,我们的目标是回答介入问题,例如餐厅人气将是什么,如果质量为本。它的方面服务增加了10%?对观测数据的因果推断的定义挑战是存在“混淆”,这可能不会被观察或测量,例如消费者对食品类型的偏好,使得估计效应偏差和高方差。为了解决这一挑战,我们求助于多模态代理,例如消费者简介信息和消费者和企业之间的互动。我们展示了如何有效利用丰富的信息来识别和估算在线评论中嵌入多个方面的因果效果。对综合和现实世界数据的实证评估证实了对拟议方法的可操作洞察力的功效和脱落。
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译
由于混杂偏见的复杂情况,使用观察数据估算治疗效果,尤其是个性化治疗效果(ITE),这是具有挑战性的。纵向观察数据估算治疗效果的现有方法通常是基于“不满意”的强烈假设,在现实世界实践中很难实现。在本文中,我们提出了变异的时间变形器(VTD),这种方法使用代理(即用于无法观察到的变量)来利用纵向设置中深层嵌入的方法。具体而言,VTD利用观察到的代理学习隐藏的嵌入,以反映观测数据中真正隐藏的混杂因素。因此,我们的VTD方法不依赖“不符”假设。我们在合成和实际临床数据上测试了VTD方法,结果表明,与其他现有模型相比,隐藏混杂性是主要偏见时我们的方法有效。
translated by 谷歌翻译
绘制因果推断的基本挑战是,任何单位都没有完全观察到反事实。此外,在观察性研究中,治疗分配可能会混淆。在不满足的条件下,已经出现了许多统计方法,这些方法在给定预处理的协变量下,包括基于倾向得分的方法,基于预后分数的方法和双重稳健方法。不幸的是,对于应用研究人员而言,没有“一定大小的”因果方法可以在普遍上表现出色。实际上,因果方法主要根据手工制作的模拟数据进行定量评估。这样的数据产生程序可能具有有限的价值,因为它们通常是现实的风格化模型。它们被简化为障碍性,缺乏现实世界数据的复杂性。对于应用研究人员,了解方法对手头数据的表现效果很好至关重要。我们的工作介绍了基于生成模型的深层框架,以验证因果推理方法。该框架的新颖性源于其产生锚定在观察到的样品的经验分布上的合成数据的能力,因此与后者几乎没有区别。该方法使用户可以为因果效应的形式和幅度指定地面真理,并将偏见作为协变量的功能。因此,模拟数据集用于评估与观察到的样本相似的数据时,各种因果估计方法的潜在性能。我们证明了Credence在广泛的仿真研究中准确评估因果估计技术的相对性能以及来自Lalonde和Project Star研究的两个现实世界数据应用的能力。
translated by 谷歌翻译
Causal learning has attracted much attention in recent years because causality reveals the essential relationship between things and indicates how the world progresses. However, there are many problems and bottlenecks in traditional causal learning methods, such as high-dimensional unstructured variables, combinatorial optimization problems, unknown intervention, unobserved confounders, selection bias and estimation bias. Deep causal learning, that is, causal learning based on deep neural networks, brings new insights for addressing these problems. While many deep learning-based causal discovery and causal inference methods have been proposed, there is a lack of reviews exploring the internal mechanism of deep learning to improve causal learning. In this article, we comprehensively review how deep learning can contribute to causal learning by addressing conventional challenges from three aspects: representation, discovery, and inference. We point out that deep causal learning is important for the theoretical extension and application expansion of causal science and is also an indispensable part of general artificial intelligence. We conclude the article with a summary of open issues and potential directions for future work.
translated by 谷歌翻译
在许多现实世界应用中,例如市场和医学,基于短期替代物的长期因果影响是一个重大但具有挑战性的问题。尽管在某些领域取得了成功,但大多数现有方法以理想主义和简单的方式估算了因果影响 - 忽略了短期结果之间的因果结构,而将所有这些因果关系视为代孕。但是,这种方法不能很好地应用于现实世界中,其中部分观察到的替代物与短期结局中的代理混合在一起。为此,我们开发了灵活的方法激光器,以估计在更现实的情况下观察或观察到代理的更现实的情况。 (ivae)在所有候选者上恢复所有有效的替代物,而无需区分观察到的替代物或潜在代理人的代理。在回收的替代物的帮助下,我们进一步设计了对长期因果影响的公正估计。关于现实世界和半合成数据集的广泛实验结果证明了我们提出的方法的有效性。
translated by 谷歌翻译
传统的推荐系统旨在根据观察到的群体的评级估算用户对物品的评级。与所有观察性研究一样,隐藏的混乱,这是影响物品曝光和用户评级的因素,导致估计系统偏差。因此,推荐制度研究的新趋势是否定混杂者对因果视角的影响。观察到建议中的混淆通常是在物品中共享的,因此是多原因混淆,我们将推荐模拟为多原因多结果(MCMO)推理问题。具体而言,为了解决混淆偏见,我们估计渲染项目曝光独立伯努利试验的用户特定的潜变量。生成分布由具有分解逻辑似然性的DNN参数化,并且通过变分推理估计难治性后续。控制这些因素作为替代混淆,在温和的假设下,可以消除多因素混淆所产生的偏差。此外,我们表明MCMO建模可能导致由于与高维因果空间相关的稀缺观察而导致高方差。幸运的是,我们理论上证明了作为预处理变量的推出用户特征可以大大提高样本效率并减轻过度装箱。模拟和现实世界数据集的实证研究表明,建议的深度因果额外推荐者比艺术最先进的因果推荐人员对未观察到的混乱更具稳健性。代码和数据集在https://github.com/yaochenzhu/deep-deconf发布。
translated by 谷歌翻译
因果推断对于跨业务参与,医疗和政策制定等领域的数据驱动决策至关重要。然而,关于因果发现的研究已经与推理方法分开发展,从而阻止了两个领域方法的直接组合。在这项工作中,我们开发了深层端到端因果推理(DECI),这是一种基于流动的非线性添加噪声模型,该模型具有观察数据,并且可以执行因果发现和推理,包括有条件的平均治疗效果(CATE) )估计。我们提供了理论上的保证,即DECI可以根据标准因果发现假设恢复地面真实因果图。受应用影响的激励,我们将该模型扩展到具有缺失值的异质,混合型数据,从而允许连续和离散的治疗决策。我们的结果表明,与因果发现的相关基线相比,DECI的竞争性能和(c)在合成数据集和因果机器学习基准测试基准的一千多个实验中,跨数据类型和缺失水平进行了估计。
translated by 谷歌翻译
This review presents empirical researchers with recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.
translated by 谷歌翻译
在考虑混杂变量时估计干预措施的效果是因果推断的关键任务。通常,混杂因素没有观察到,但是我们可以访问大量的非结构化数据(图像,文本),这些数据包含有关缺失混杂因素的有价值的代理信号。本文表明,利用通常被现有算法未使用的非结构化数据提高了因果效应估计的准确性。具体而言,我们引入了深层多模式结构方程,这是一个生成模型,其中混杂因素是潜在变量,非结构化数据是代理变量。该模型支持多个多模式代理(图像,文本)以及缺少数据。我们从经验上证明了基因组学和医疗保健的任务,我们的方法纠正了使用非结构化输入混淆,从而有可能使用以前在因果推理中不使用的大量数据。
translated by 谷歌翻译
估计平均因果效应的理想回归(如果有)是什么?我们在离散协变量的设置中研究了这个问题,从而得出了各种分层估计器的有限样本方差的表达式。这种方法阐明了许多广泛引用的结果的基本统计现象。我们的博览会结合了研究因果效应估计的三种不同的方法论传统的见解:潜在结果,因果图和具有加性误差的结构模型。
translated by 谷歌翻译