最近,深度学习模型已在工业推荐系统中广泛传播,并提高了建议质量。尽管取得了杰出的成功,但任务吸引推荐系统的设计通常需要域专家的手动功能工程和建筑工程。为了减轻人类的努力,我们探索了神经体系结构搜索(NAS)的潜力,并在推荐系统中引入了自动行为建模,互动探索和多层感知器(MLP)研究的AMEIR。 Ameir的核心贡献是三阶段的搜索空间和量身定制的三步搜索管道。具体而言,Ameir将完整的建议模型分为行为建模,交互探索,MLP聚合的三个阶段,并引入了一个新颖的搜索空间,其中包含三个量身定制的子空间,这些子空间涵盖了大多数现有方法,从而允许搜索更好的模型。为了有效,有效地找到理想的体系结构,Ameir在三个阶段逐渐推荐中实现了一次弹奏随机搜索,并将搜索结果组装为最终结果。进一步的分析表明,Ameir的搜索空间可以涵盖大多数代表性推荐模型,这证明了我们设计的普遍性。在各种情况下进行的广泛实验表明,AMEIR的表现优于精心制作的手动设计的竞争基准和领先的算法复杂的NAS方法,具有较低的模型复杂性和可比的时间成本,表明所提出的方法的效率,效率和鲁棒性。
translated by 谷歌翻译
学习捕获特征关系有效,有效地是现代推荐系统的点击率(CTR)预测的必要条件。大多数现有的CTR预测方法通过繁琐的手动设计的低阶交互或通过不灵活和低效的高阶交互来模型这样的关系,这两者都需要额外的DNN模块进行隐式交互建模。在本文中,我们提出了一种新颖的插件操作,动态参数化操作(DPO),以便明智地学习显式和隐式交互实例。我们认为DPO进入DNN模块和注意力模块可以分别有利于CTR预测中的两个主要任务,增强了基于特征的建模和改进用户行为建模的适应性与实例 - 方向性。我们的动态参数化网络在公共数据集和现实世界生产数据集的离线实验中显着优于最先进的方法,以及在线A / B测试。此外,建议的动态参数化网络已经在世界上最大的电子商务公司之一的排名系统中部署,服务于数亿个活跃用户的主要流量。
translated by 谷歌翻译
在点击率(CTR)预测方案中,用户的顺序行为很好地利用来捕获最近文献中的用户兴趣。然而,尽管正在广泛研究,但这些顺序方法仍然存在三个限制。首先,现有方法主要利用对用户行为的注意,这并不总是适用于CTR预测,因为用户经常点击与任何历史行为无关的新产品。其次,在真实场景中,很久以前存在许多具有运营的用户,但最近的次数相对不活跃。因此,难以通过早期行为精确地捕获用户的当前偏好。第三,不同特征子空间中用户历史行为的多个表示主要被忽略。为了解决这些问题,我们提出了一种多互动关注网络(Mian),全面提取各种细粒度特征之间的潜在关系(例如,性别,年龄和用户档案)。具体而言,MIAN包含多交互式层(MIL),其集成了三个本地交互模块,通过顺序行为捕获用户偏好的多个表示,并同时利用细粒度的用户特定的以及上下文信息。此外,我们设计了一个全局交互模块(GIM)来学习高阶交互,平衡多个功能的不同影响。最后,脱机实验结果来自三个数据集,以及在大型推荐系统中的在线A / B测试,展示了我们提出的方法的有效性。
translated by 谷歌翻译
人类智能能够首先学习一些基本技能,以解决基本问题,然后将这种基本技能融合到解决复杂或新问题的复杂技能中。例如,基本技能``挖洞'',``放树,'''``回填''和``浇水'''构成复杂的技能``植物''。此外,可以重复使用一些基本技能来解决其他问题。例如,基本技能``挖洞''不仅可以用于种植树木,而且还可以用于采矿,建造排水管或垃圾填埋场。学习基本技能并重复使用各种任务的能力对人类非常重要,因为它有助于避免学习太多的技能来解决每个任务,并可以通过仅学习几个数量来解决组成数量的任务数量基本技能,可以节省人脑中大量的记忆和计算。我们认为,机器智能还应捕捉学习基本技能并通过构成复杂技能的能力。在计算机科学语言中,每种基本技能都是“模块”,它是一个可重复使用的具体含义的网络,并执行特定的基本操作。将模块组装成更大的``模型'',以完成更复杂的任务。组装过程适应输入或任务,即,对于给定的任务,应该将模块组装成解决任务的最合适的模型中。结果,不同的输入或任务可能具有不同的组装模型,从而实现自组装AI。在这项工作中,我们提出了模块化的自适应神经体系结构搜索(MANAS),以演示上述想法。不同数据集上的实验表明,MANAS组装的自适应体系结构优于静态全局体系结构。进一步的实验和经验分析为魔力的有效性提供了见解。
translated by 谷歌翻译
对用户偏好的演变进行建模对于推荐系统至关重要。最近,已经研究并实现了基于图形的动态方法以供推荐使用,其中大多数侧重于用户稳定的长期偏好。但是,在实际情况下,用户的短期偏好会随着时间的流逝而动态发展。尽管存在试图捕获它的顺序方法,但是如何使用基于动态图的方法对短期偏好的演变进行建模尚未得到很好的认可。特别是:1)现有方法不会像顺序方法一样明确编码和捕获短期偏好的演变; 2)简单地使用最后几个交互不足以建模变化的趋势。在本文中,我们提出了连续时间顺序推荐(LSTSR)的长期短期偏好模型(LSTSR),以捕获动态图下短期偏好的演变。具体而言,我们明确编码短期优先偏好并通过内存机制进行优化,该内存机制具有三个关键操作:消息,汇总和更新。我们的内存机制不仅可以存储单跳信息,而且还可以通过在线新的交互触发。在五个公共数据集上进行的广泛实验表明,LSTSR始终优于各种线路上许多最先进的建议方法。
translated by 谷歌翻译
基于历史行为数据的行为预测具有实际的现实意义。它已在推荐,预测学习成绩等中应用。随着用户数据描述的完善,新功能的发展以及多个数据源的融合,包含多种行为的异质行为数据变得越来越普遍。在本文中,我们旨在纳入行为预测的异质用户行为和社会影响。为此,本文提出了一个长期术语内存(LSTM)的变体,该变体可以在对行为序列进行建模时考虑上下文信息,该投影机制可以模拟不同类型的行为之间的多方面关系以及多方面的多方面关系注意机制可以动态地从不同的方面找到信息。许多行为数据属于时空数据。提出了一种基于时空数据并建模社会影响力的社交行为图的无监督方法。此外,基于剩余的基于学习的解码器旨在根据社会行为表示和其他类型的行为表示自动构建多个高阶交叉特征。对现实世界数据集的定性和定量实验已经证明了该模型的有效性。
translated by 谷歌翻译
受到计算机愿景和语言理解的深度学习的巨大成功的影响,建议的研究已经转移到发明基于神经网络的新推荐模型。近年来,我们在开发神经推荐模型方面目睹了显着进展,这概括和超越了传统的推荐模型,由于神经网络的强烈代表性。在本调查论文中,我们从建议建模与准确性目标的角度进行了系统审查,旨在总结该领域,促进研究人员和从业者在推荐系统上工作的研究人员和从业者。具体而具体基于推荐建模期间的数据使用,我们将工作划分为协作过滤和信息丰富的建议:1)协作滤波,其利用用户项目交互数据的关键来源; 2)内容丰富的建议,其另外利用与用户和项目相关的侧面信息,如用户配置文件和项目知识图; 3)时间/顺序推荐,其考虑与交互相关的上下文信息,例如时间,位置和过去的交互。在为每种类型审查代表性工作后,我们终于讨论了这一领域的一些有希望的方向。
translated by 谷歌翻译
点击率(CTR)预测是许多应用程序的关键任务,因为它的准确性对用户体验和平台收入有直接影响。近年来,CTR预测已在学术界和工业中广泛研究,导致各种各样的CTR预测模型。不幸的是,仍然缺乏标准化的基准和CTR预测研究的统一评估协议。这导致现有研究中的不可重复或甚至不一致的实验结果,这在很大程度上限制了他们研究的实用价值和潜在影响。在这项工作中,我们的目标是对CTR预测进行开放基准测试,并以可重复的方式表现不同模型的严格比较。为此,我们运行{超过7,000多个实验,总共超过12,000 GPU小时,在多个数据集设置上重新评估24个现有型号}。令人惊讶的是,我们的实验表明,具有足够的超参数搜索和模型调整,许多深层模型的差异比预期较小。结果还表明,在CTR预测的建模上取得实际进展确实是一个非常具有挑战性的研究任务。我们相信,我们的基准工作不仅可以让研究人员可以方便地衡量新型模型的有效性,而且还使他们与艺术的国家相当相提并论。我们公开发布了我们工作的基准工具,评估协议和实验环境,以促进该领域的可重复研究。
translated by 谷歌翻译
Learning feature interactions is the key to success for the large-scale CTR prediction and recommendation. In practice, handcrafted feature engineering usually requires exhaustive searching. In order to reduce the high cost of human efforts in feature engineering, researchers propose several deep neural networks (DNN)-based approaches to learn the feature interactions in an end-to-end fashion. However, existing methods either do not learn both vector-wise interactions and bit-wise interactions simultaneously, or fail to combine them in a controllable manner. In this paper, we propose a new model, xDeepInt, based on a novel network architecture called polynomial interaction network (PIN) which learns higher-order vector-wise interactions recursively. By integrating subspace-crossing mechanism, we enable xDeepInt to balance the mixture of vector-wise and bit-wise feature interactions at a bounded order. Based on the network architecture, we customize a combined optimization strategy to conduct feature selection and interaction selection. We implement the proposed model and evaluate the model performance on three real-world datasets. Our experiment results demonstrate the efficacy and effectiveness of xDeepInt over state-of-the-art models. We open-source the TensorFlow implementation of xDeepInt: https://github.com/yanyachen/xDeepInt.
translated by 谷歌翻译
特征交互已被识别为机器学习中的一个重要问题,这对于点击率(CTR)预测任务也是非常重要的。近年来,深度神经网络(DNN)可以自动从原始稀疏功能中学习隐式非线性交互,因此已广泛用于工业CTR预测任务。然而,在DNN中学到的隐式特征交互不能完全保留原始和经验特征交互的完整表示容量(例如,笛卡尔产品)而不会损失。例如,简单地尝试学习特征A和特征B <A,B>作为新特征的显式笛卡尔产品表示可以胜过先前隐式功能交互模型,包括基于分解机(FM)的模型及其变体。在本文中,我们提出了一个共同行动网络(CAN),以近似于显式成对特征交互,而不会引入太多的附加参数。更具体地,给出特征A及其相关的特征B,通过学习两组参数来建模它们的特征交互:1)嵌入特征A和2)以表示特征B的多层Perceptron(MLP)。近似通过通过特征B的MLP网络传递特征A的嵌入可以获得特征交互。我们将这种成对特征交互作为特征合作,并且这种共动网单元可以提供拟合复合物的非常强大的容量功能交互。公共和工业数据集的实验结果表明,可以优于最先进的CTR模型和笛卡尔产品方法。此外,可以在阿里巴巴的显示广告系统中部署,获得12 \%的CTR和8 \%关于每个Mille(RPM)的收入,这是对业务的巨大改进。
translated by 谷歌翻译
Increasing research interests focus on sequential recommender systems, aiming to model dynamic sequence representation precisely. However, the most commonly used loss function in state-of-the-art sequential recommendation models has essential limitations. To name a few, Bayesian Personalized Ranking (BPR) loss suffers the vanishing gradient problem from numerous negative sampling and predictionbiases; Binary Cross-Entropy (BCE) loss subjects to negative sampling numbers, thereby it is likely to ignore valuable negative examples and reduce the training efficiency; Cross-Entropy (CE) loss only focuses on the last timestamp of the training sequence, which causes low utilization of sequence information and results in inferior user sequence representation. To avoid these limitations, in this paper, we propose to calculate Cumulative Cross-Entropy (CCE) loss over the sequence. CCE is simple and direct, which enjoys the virtues of painless deployment, no negative sampling, and effective and efficient training. We conduct extensive experiments on five benchmark datasets to demonstrate the effectiveness and efficiency of CCE. The results show that employing CCE loss on three state-of-the-art models GRU4Rec, SASRec, and S3-Rec can reach 125.63%, 69.90%, and 33.24% average improvement of full ranking NDCG@5, respectively. Using CCE, the performance curve of the models on the test data increases rapidly with the wall clock time, and is superior to that of other loss functions in almost the whole process of model training.
translated by 谷歌翻译
点击率(CTR)预测的目标是预测用户单击项目的可能性,在推荐系统中变得越来越重要。最近,一些具有自动从他/她的行为中提取用户兴趣的深度学习模型取得了巨大的成功。在这些工作中,注意机制用于选择用户在历史行为中感兴趣的项目,从而提高CTR预测指标的性能。通常,这些细心的模块可以通过使用梯度下降与基本预测变量共同训练。在本文中,我们将用户兴趣建模视为特征选择问题,我们称之为用户兴趣选择。对于这样一个问题,我们在包装法的框架下提出了一种新颖的方法,该方法被称为Meta-wrapper。更具体地说,我们使用可区分的模块作为包装运算符,然后将其学习问题重新提出为连续的二元优化。此外,我们使用元学习算法来求解优化并理论上证明其收敛性。同时,我们还提供了理论分析,以表明我们提出的方法1)效率基于包装器的特征选择,而2)可以更好地抵抗过度拟合。最后,在三个公共数据集上进行的广泛实验表明了我们方法在提高CTR预测的性能方面的优势。
translated by 谷歌翻译
在本文中,我们考虑点击率(CTR)预测问题。因子化机器及其变体考虑配对特征交互,但通常我们不会由于高时间复杂度而使用FM进行高阶功能交互。鉴于许多领域的深度神经网络(DNN)的成功,研究人员提出了几种基于DNN的模型来学习高阶功能交互。已广泛用于从功能嵌入到最终登录的功能嵌入的可靠映射,从而广泛使用多层。在本文中,我们的目标是更多地探索这些高阶功能的交互。然而,高阶特征互动值得更加关注和进一步发展。灵感来自计算机愿景中密集连接的卷积网络(DENSENET)的巨大成就,我们提出了一种新颖的模型,称为殷勤基于DENENET的分解机(ADNFM)。 ADNFM可以通过使用前馈神经网络的所有隐藏层作为隐式的高阶功能来提取更全面的深度功能,然后通过注意机制选择主导特征。此外,使用DNN的隐式方式的高阶交互比以明确的方式更具成本效益,例如在FM中。两个真实数据集的广泛实验表明,所提出的模型可以有效地提高CTR预测的性能。
translated by 谷歌翻译
深度神经网络的兴起为优化推荐系统提供了重要的驱动力。但是,推荐系统的成功在于精致的建筑制造,因此呼吁神经建筑搜索(NAS)进一步改善其建模。我们提出了NASREC,它是一种训练单个超级网的范式,并通过重量共享有效地产生丰富的模型/子构造。为了克服数据多模式和体系结构异质性挑战,NASREC建立了一个大型的超级网(即搜索空间),以搜索完整的体系结构,而SuperNet结合了多功能操作员的选择和密集的连接性选择,并使人类的密集连接性最小化。 Nasrec的规模和异质性在搜索中构成了挑战,例如训练效率低下,操作员不平衡和降级等级相关性。我们通过提出单操作员任何连接采样,操作员平衡互动模块和训练后微调来应对这些挑战。我们对三个点击率(CTR)预测基准测试的结果表明,NASREC可以胜过手动设计的模型和现有的NAS方法,从而实现最先进的性能。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
预测短期交互会话的下一个交互是基于会话的推荐中的一个具有挑战性的任务。几乎所有现有的作品都依赖于项目转换模式,并在建模用户偏好时忽略用户历史会话的影响,这通常会导致非个性化推荐。此外,基于现有的个性化会话的推荐人仅基于当前用户的会话捕获用户首选项,而是忽略来自其他用户的历史会话的有用物品转换模式。为了解决这些问题,我们提出了一种新颖的异构全球图形神经网络(HG-GNN)以以微妙的方式利用所有会话的物品过渡,以便更好地推断用户偏好与当前和历史会话。为了有效利用所有用户的所有会话转换,我们提出了一种新的异构全局图,该图包含会话,用户项交互和全局共同发生项目的项目转换。此外,为了综合地从会话中捕获用户偏好,我们建议通过两个图形增强偏好编码器学习来自全局图的两个用户表示。具体地,我们在异构全球图上设计一种新的异构图形神经网络(HGNN),以了解具有丰富语义的长期用户偏好和项目表示。基于HGNN,我们提出了当前偏好编码器和历史偏好编码器,分别捕获来自当前和历史会话的不同级别的用户偏好。为实现个性化建议,我们将用户当前偏好和历史利益的表示集成到生成最终用户首选项表示。三个真实数据集的广泛实验结果表明,我们的模型优于其他最先进的方法。
translated by 谷歌翻译
因子化机器(FM)是在处理高维稀疏数据时建模成对(二阶)特征交互的普遍存在方法。然而,一方面,FM无法捕获患有组合扩展的高阶特征相互作用,另一方面,考虑每对特征之间的相互作用可能引入噪声和降低预测精度。为了解决问题,我们通过在图形结构中自然表示特征来提出一种新颖的方法图形因子分子机器(GraphFM)。特别地,设计了一种新颖的机制来选择有益特征相互作用,并将它们装配为特征之间的边缘。然后我们所提出的模型将FM的交互功能集成到图形神经网络(GNN)的特征聚合策略中,可以通过堆叠图层模拟图形结构特征上的任意顺序特征交互。关于若干现实世界数据集的实验结果表明了我们提出的方法的合理性和有效性。
translated by 谷歌翻译
促销活动在电子商务平台上变得更加重要和普遍,以吸引客户和提升销售。但是,推荐系统中的点击率(CTR)预测方法无法处理此类情况,因为:1)他们无法概括为服务,因为在线数据分布是不确定的,因为可能正在推出的促销潜在的促销; 2)在不够重视方案信号的情况下,它们无法学习在每个场景中共存的不同特征表示模式。在这项工作中,我们提出了方案自适应混合的专家(相同),这是一个简单而有效的模型,用于促销和正常情况。从技术上讲,它通过采用多个专家来学习专家来遵循专家混合的想法,这些特征表示通过注意机制通过特征门控网络(FGN)进行调制。为了获得高质量的表示,我们设计了一个堆叠的并行关注单元(SPAU),以帮助每个专家更好地处理用户行为序列。为了解决分布不确定性,从时间序列预测的角度精确地设计了一组场景信号,并馈入FGN,其输出与来自每个专家的特征表示连接,以学会注意。因此,特征表示的混合是自适应的场景和用于最终的CTR预测。通过这种方式,每个专家都可以学习鉴别的表示模式。据我们所知,这是第一次推广感知CTR预测的研究。实验结果对现实世界数据集验证了同一的优势。在线A / B测试也表现出同样的促销期间在CTR上的显着增益和5.94%的IPV,分别在正常日内为3.93%和6.57%。
translated by 谷歌翻译
点击率预测是商业推荐系统中的核心任务之一。它旨在预测用户点击给定用户和项目特征的特定项目的概率。随着特征相互作用引入非线性,它们被广泛采用以提高CTR预测模型的性能。因此,有效的建模特征互动在研究和工业领域引起了很多关注。目前的方法通常可以分为三类:(1)NA \“IVE方法,它不会模拟特征交互,只使用原始特征;(2)记忆方法,通过显式将其视为新功能而记住功能交互。分配可培训嵌入式;(3)分解方法,学习原始特征的潜在矢量和通过分解功能的隐式模型相互作用。研究表明,由于不同特征相互作用的独特特征,这些方法之一的建模特征交互是次优。为了解决这个问题,我们首先提出一个称为OptInter的一般框架,该框架可以找到每个功能交互的最合适的建模方法。可以将不同的最先进的深度CTR模型视为optinter的实例。实现功能Optinter,我们还介绍了一种自动搜索最佳建模方法的学习算法。W e在四个大型数据集中进行广泛的实验。我们的实验表明,Optinter可提高最佳的最先进的基线深度CTR模型,高达2.21%。与回忆的方法相比,这也优于基线,我们减少了高达91%的参数。此外,我们进行了几项消融研究,以研究Optinter不同组分的影响。最后,我们提供关于替代替代品结果的可解释讨论。
translated by 谷歌翻译
推荐系统是机器学习系统的子类,它们采用复杂的信息过滤策略来减少搜索时间,并向任何特定用户建议最相关的项目。混合建议系统以不同的方式结合了多种建议策略,以从其互补的优势中受益。一些混合推荐系统已经结合了协作过滤和基于内容的方法来构建更强大的系统。在本文中,我们提出了一个混合推荐系统,该系统将基于最小二乘(ALS)的交替正方(ALS)的协作过滤与深度学习结合在一起,以增强建议性能,并克服与协作过滤方法相关的限制,尤其是关于其冷启动问题。本质上,我们使用ALS(协作过滤)的输出来影响深度神经网络(DNN)的建议,该建议结合了大数据处理框架中的特征,上下文,结构和顺序信息。我们已经进行了几项实验,以测试拟议混合体架构向潜在客户推荐智能手机的功效,并将其性能与其他开源推荐人进行比较。结果表明,所提出的系统的表现优于几个现有的混合推荐系统。
translated by 谷歌翻译