促销活动在电子商务平台上变得更加重要和普遍,以吸引客户和提升销售。但是,推荐系统中的点击率(CTR)预测方法无法处理此类情况,因为:1)他们无法概括为服务,因为在线数据分布是不确定的,因为可能正在推出的促销潜在的促销; 2)在不够重视方案信号的情况下,它们无法学习在每个场景中共存的不同特征表示模式。在这项工作中,我们提出了方案自适应混合的专家(相同),这是一个简单而有效的模型,用于促销和正常情况。从技术上讲,它通过采用多个专家来学习专家来遵循专家混合的想法,这些特征表示通过注意机制通过特征门控网络(FGN)进行调制。为了获得高质量的表示,我们设计了一个堆叠的并行关注单元(SPAU),以帮助每个专家更好地处理用户行为序列。为了解决分布不确定性,从时间序列预测的角度精确地设计了一组场景信号,并馈入FGN,其输出与来自每个专家的特征表示连接,以学会注意。因此,特征表示的混合是自适应的场景和用于最终的CTR预测。通过这种方式,每个专家都可以学习鉴别的表示模式。据我们所知,这是第一次推广感知CTR预测的研究。实验结果对现实世界数据集验证了同一的优势。在线A / B测试也表现出同样的促销期间在CTR上的显着增益和5.94%的IPV,分别在正常日内为3.93%和6.57%。
translated by 谷歌翻译
与淘宝和亚马逊等大型平台不同,由于严重的数据分配波动(DDF)问题,在小规模推荐方案中开发CVR模型是更具挑战性的。 DDF防止现有的CVR模型自生效以来,因为1)需要几个月的数据需要足够小的场景训练CVR模型,导致培训和在线服务之间的相当大的分布差异; 2)电子商务促销对小型情景产生了更大的影响,导致即将到期的时间段的不确定性。在这项工作中,我们提出了一种名为MetacVR的新型CVR方法,从Meta学习的角度解决了DDF问题。首先,由特征表示网络(FRN)和输出层组成的基础CVR模型是精心设计和培训的,在几个月内与样品充分设计和培训。然后,我们将不同数据分布的时间段视为不同的场合,并使用相应的样本和预先训练的FRN获得每个场合的正面和负原型。随后,设计了距离度量网络(DMN)以计算每个样本和所有原型之间的距离度量,以便于减轻分布不确定性。最后,我们开发了一个集合预测网络(EPN),该网络(EPN)包含FRN和DMN的输出以进行最终的CVR预测。在这个阶段,我们冻结了FRN并用最近一段时间的样品训练DMN和EPN,因此有效地缓解了分布差异。据我们所知,这是在小规模推荐方案中针对DDF问题的CVR预测第一次研究。实验结果对现实世界数据集验证了我们的MetacVR和Online A / B测试的优越性也表明我们的模型在PCVR上实现了11.92%的令人印象深刻的收益和GMV的8.64%。
translated by 谷歌翻译
在点击率(CTR)预测方案中,用户的顺序行为很好地利用来捕获最近文献中的用户兴趣。然而,尽管正在广泛研究,但这些顺序方法仍然存在三个限制。首先,现有方法主要利用对用户行为的注意,这并不总是适用于CTR预测,因为用户经常点击与任何历史行为无关的新产品。其次,在真实场景中,很久以前存在许多具有运营的用户,但最近的次数相对不活跃。因此,难以通过早期行为精确地捕获用户的当前偏好。第三,不同特征子空间中用户历史行为的多个表示主要被忽略。为了解决这些问题,我们提出了一种多互动关注网络(Mian),全面提取各种细粒度特征之间的潜在关系(例如,性别,年龄和用户档案)。具体而言,MIAN包含多交互式层(MIL),其集成了三个本地交互模块,通过顺序行为捕获用户偏好的多个表示,并同时利用细粒度的用户特定的以及上下文信息。此外,我们设计了一个全局交互模块(GIM)来学习高阶交互,平衡多个功能的不同影响。最后,脱机实验结果来自三个数据集,以及在大型推荐系统中的在线A / B测试,展示了我们提出的方法的有效性。
translated by 谷歌翻译
最近,深度学习模型已在工业推荐系统中广泛传播,并提高了建议质量。尽管取得了杰出的成功,但任务吸引推荐系统的设计通常需要域专家的手动功能工程和建筑工程。为了减轻人类的努力,我们探索了神经体系结构搜索(NAS)的潜力,并在推荐系统中引入了自动行为建模,互动探索和多层感知器(MLP)研究的AMEIR。 Ameir的核心贡献是三阶段的搜索空间和量身定制的三步搜索管道。具体而言,Ameir将完整的建议模型分为行为建模,交互探索,MLP聚合的三个阶段,并引入了一个新颖的搜索空间,其中包含三个量身定制的子空间,这些子空间涵盖了大多数现有方法,从而允许搜索更好的模型。为了有效,有效地找到理想的体系结构,Ameir在三个阶段逐渐推荐中实现了一次弹奏随机搜索,并将搜索结果组装为最终结果。进一步的分析表明,Ameir的搜索空间可以涵盖大多数代表性推荐模型,这证明了我们设计的普遍性。在各种情况下进行的广泛实验表明,AMEIR的表现优于精心制作的手动设计的竞争基准和领先的算法复杂的NAS方法,具有较低的模型复杂性和可比的时间成本,表明所提出的方法的效率,效率和鲁棒性。
translated by 谷歌翻译
学习捕获特征关系有效,有效地是现代推荐系统的点击率(CTR)预测的必要条件。大多数现有的CTR预测方法通过繁琐的手动设计的低阶交互或通过不灵活和低效的高阶交互来模型这样的关系,这两者都需要额外的DNN模块进行隐式交互建模。在本文中,我们提出了一种新颖的插件操作,动态参数化操作(DPO),以便明智地学习显式和隐式交互实例。我们认为DPO进入DNN模块和注意力模块可以分别有利于CTR预测中的两个主要任务,增强了基于特征的建模和改进用户行为建模的适应性与实例 - 方向性。我们的动态参数化网络在公共数据集和现实世界生产数据集的离线实验中显着优于最先进的方法,以及在线A / B测试。此外,建议的动态参数化网络已经在世界上最大的电子商务公司之一的排名系统中部署,服务于数亿个活跃用户的主要流量。
translated by 谷歌翻译
传统的工业推荐人通常在单一的业务领域培训,然后为此域名服务。但是,在大型商业平台中,通常情况下,推荐人需要为多个业务域提供点击率(CTR)预测。不同的域具有重叠的用户组和项目。因此,存在共性。由于特定用户组具有差异,并且用户行为可能在各种商业域中改变,因此还存在区别。区别导致特定于域的数据分布,使单个共享模型很难在所有域上运行良好。要学习一个有效且高效的CTR模型,可以同时处理多个域,我们呈现明星拓扑自适应推荐(Star)。具体而言,STAR具有星形拓扑,由共享中心参数和特定于域的参数组成。共享参数用于学习所有域的共性,以及域特定参数捕获域区分以进行更精细的预测。给定来自不同商业域的请求,Star可以根据域特征调节其参数。生产数据的实验结果验证了所提出的明星模型的优越性。自2020年以来,STAR已部署在阿里巴巴的显示广告系统中,从RPM获得平均8.0%的改进和6.0%(每米尔勒收入)。
translated by 谷歌翻译
基于历史行为数据的行为预测具有实际的现实意义。它已在推荐,预测学习成绩等中应用。随着用户数据描述的完善,新功能的发展以及多个数据源的融合,包含多种行为的异质行为数据变得越来越普遍。在本文中,我们旨在纳入行为预测的异质用户行为和社会影响。为此,本文提出了一个长期术语内存(LSTM)的变体,该变体可以在对行为序列进行建模时考虑上下文信息,该投影机制可以模拟不同类型的行为之间的多方面关系以及多方面的多方面关系注意机制可以动态地从不同的方面找到信息。许多行为数据属于时空数据。提出了一种基于时空数据并建模社会影响力的社交行为图的无监督方法。此外,基于剩余的基于学习的解码器旨在根据社会行为表示和其他类型的行为表示自动构建多个高阶交叉特征。对现实世界数据集的定性和定量实验已经证明了该模型的有效性。
translated by 谷歌翻译
对用户偏好的演变进行建模对于推荐系统至关重要。最近,已经研究并实现了基于图形的动态方法以供推荐使用,其中大多数侧重于用户稳定的长期偏好。但是,在实际情况下,用户的短期偏好会随着时间的流逝而动态发展。尽管存在试图捕获它的顺序方法,但是如何使用基于动态图的方法对短期偏好的演变进行建模尚未得到很好的认可。特别是:1)现有方法不会像顺序方法一样明确编码和捕获短期偏好的演变; 2)简单地使用最后几个交互不足以建模变化的趋势。在本文中,我们提出了连续时间顺序推荐(LSTSR)的长期短期偏好模型(LSTSR),以捕获动态图下短期偏好的演变。具体而言,我们明确编码短期优先偏好并通过内存机制进行优化,该内存机制具有三个关键操作:消息,汇总和更新。我们的内存机制不仅可以存储单跳信息,而且还可以通过在线新的交互触发。在五个公共数据集上进行的广泛实验表明,LSTSR始终优于各种线路上许多最先进的建议方法。
translated by 谷歌翻译
客户寿命价值(LTV)是单个用户可以带给企业的预期总收入。它被广泛用于各种业务方案,以在获取新客户时做出运营决策。由于其复杂且可变的数据分布,建模LTV是一个具有挑战性的问题。现有方法要么直接从后验特征分布中学习,要么利用统计模型,这些模型对先前的分布做出了强有力的假设,这两者都无法捕获这些可变分布。在本文中,我们提出了一套完整的工业级LTV建模解决方案。具体而言,我们引入了一个订单依赖性单调网络(ODMN),该网络对不同时间跨度LTV之间的有序依赖关系进行建模,从而极大地改善了模型性能。我们进一步介绍了基于分裂和混合想法的多分销多专家(MDME)模块,该模块将严重不平衡的分布建模问题转换为一系列相对平衡的亚分布建模问题,因此大大降低了建模的复杂性。此外,引入了新的评估度量互助Gini,以更好地测量基于洛伦兹曲线的估计值和地面真相标签之间的分布差。 ODMN框架已成功部署在Kuaishou的许多业务场景中,并取得了出色的性能。对实际工业数据的广泛实验表明,与包括ZILN和两阶段XGBoost模型在内的最新基线相比,所提出的方法的优越性。
translated by 谷歌翻译
共享符号跨域顺序推荐(SCSR)任务旨在通过利用多个域中的混合用户行为推荐下一个项目。随着越来越多的用户倾向于在不同的平台上注册并与他人共享访问特定于域的服务,它正在引起极大的研究关注。现有关于SCSR的作品主要依赖于基于复发的神经网络(RNN)模型的采矿顺序模式,这些模型受到以下局限性:1)基于RNN的方法,基于RNN的方法绝大多数目标是发现单用户行为中的顺序依赖性。它们的表现不足以捕获SCSR中多个实体之间的关系。 2)所有现有方法通过潜在空间中的知识转移桥接两个域,并忽略显式的跨域图结构。 3)没有现有研究考虑项目之间的时间间隔信息,这对于表征不同项目和学习判别性表示的顺序建议至关重要。在这项工作中,我们提出了一种新的基于图的解决方案,即TIDA-GCN,以应对上述挑战。具体来说,我们首先将每个域中的用户和项目链接为图。然后,我们设计了一个域感知图形卷积网络,以学习用户特异性节点表示。为了充分说明用户对项目的域特异性偏好,进一步开发了两个有效的注意机制,以选择性地指导消息传递过程。此外,为了进一步增强项目和帐户级的表示学习,我们将时间间隔纳入消息传递中,并为学习项目的交互式特征设计一个帐户意识的自我发项模块。实验证明了我们提出的方法从各个方面的优越性。
translated by 谷歌翻译
在多种方案中,多幕科建议专门为用户检索相关项目,这在工业推荐系统中无处不在。这些方案享有用户和项目中的一部分重叠,而不同方案的分布则不同。多阶段建模的关键点是有效地最大程度地利用全幕纳罗来信息,并在多种情况下为用户和项目生成适应性表示。我们总结了三个实用挑战,这些挑战无法很好地解决多幕科建模:(1)在多种情况下缺乏细粒度和脱钩的信息传输控制。 (2)整个空间样品的开发不足。 (3)项目的多幕科代表性分解问题。在本文中,我们提出了一种情景自适应和自我监督(SASS)模型,以解决上述三个挑战。具体而言,我们使用场景自适应门单元设计了多层场景自适应转移(ML-SAT)模块,以相当细粒度且脱钩的方式选择并融合从整个场景到单个场景的有效传输信息。为了充分利用整个空间样品的功能,引入了包括预训练和微调在内的两阶段训练过程。预训练阶段是基于场景监督的对比学习任务,并从标记和未标记的数据空间中绘制的培训样本。该模型是在用户端和项目方面对称创建的,因此我们可以在不同情况下获得项目的区分表示。公共和工业数据集的广泛实验结果证明了SASS模型比最先进的方法的优越性。该模型还可以在在线A/B测试中平均每位用户的观看时间提高8.0%以上。
translated by 谷歌翻译
工业推荐系统通常提出包含来自多个子系统的结果的混合列表。实际上,每个子系统都使用自己的反馈数据进行了优化,以避免不同子系统之间的干扰。但是,我们认为,由于\ textit {数据稀疏},此类数据使用可能会导致次优的在线性能。为了减轻此问题,我们建议从包含网络尺度和长期印象数据的\ textit {super-domain}中提取知识,并进一步协助在线推荐任务(下游任务)。为此,我们提出了一个新颖的工业\ textbf {k} nowl \ textbf {e} dge \ textbf {e} xtraction和\ textbf {p} lugging(\ textbf {keep})框架,这是一个两阶段的框架其中包括1)超级域上有监督的预训练知识提取模块,以及2)将提取的知识纳入下游模型的插件网络。这使得对在线推荐的逐步培训变得友好。此外,我们设计了一种有效的经验方法,用于在大规模工业系统中实施Keep时保持和介绍我们的动手经验。在两个现实世界数据集上进行的实验表明,保持可以实现有希望的结果。值得注意的是,Keep也已部署在阿里巴巴的展示广告系统上,带来了$+5.4 \%$ CTR和$+4.7 \%\%$ rpm的提升。
translated by 谷歌翻译
给定一系列集合,其中每个集合与时间戳关联并包含任意数量的元素,时间集的任务预测旨在预测后续集合中的元素。先前对时间集预测的研究主要通过从自己的序列中学习来捕获每个用户的进化偏好。尽管有见地,但我们认为:1)不同用户序列中潜在的协作信号是必不可少的,但尚未被利用; 2)用户还倾向于显示固定的偏好,而现有方法未能考虑。为此,我们提出了一个集成的学习框架,以对时间集预测的用户的进化和固定偏好进行建模,该预测首先通过按时间顺序排列所有用户群的交互来构建通用序列,然后在每个用户集中学习相互作用。特别是,对于每个用户集的交互,我们首先设计一个进化用户偏好建模组件,以跟踪用户的时间不断发展的偏好,并在不同用户之间利用潜在的协作信号。该组件维护一个存储库来存储相关用户和元素的记忆,并根据当前编码的消息和过去的记忆不断更新其记忆。然后,我们设计了一个固定的用户偏好模型模块,以根据历史序列来发现每个用户的个性化特征,该模块从双重角度自适应地汇总了以前相互作用的元素,并在用户和元素的嵌入方式的指导下。最后,我们开发了一种设定批次算法来提高模型效率,该算法可以提前创建时间一致的批次,并平均实现3.5倍的训练速度。现实世界数据集的实验证明了我们方法的有效性和良好的解释性。
translated by 谷歌翻译
受到计算机愿景和语言理解的深度学习的巨大成功的影响,建议的研究已经转移到发明基于神经网络的新推荐模型。近年来,我们在开发神经推荐模型方面目睹了显着进展,这概括和超越了传统的推荐模型,由于神经网络的强烈代表性。在本调查论文中,我们从建议建模与准确性目标的角度进行了系统审查,旨在总结该领域,促进研究人员和从业者在推荐系统上工作的研究人员和从业者。具体而具体基于推荐建模期间的数据使用,我们将工作划分为协作过滤和信息丰富的建议:1)协作滤波,其利用用户项目交互数据的关键来源; 2)内容丰富的建议,其另外利用与用户和项目相关的侧面信息,如用户配置文件和项目知识图; 3)时间/顺序推荐,其考虑与交互相关的上下文信息,例如时间,位置和过去的交互。在为每种类型审查代表性工作后,我们终于讨论了这一领域的一些有希望的方向。
translated by 谷歌翻译
特征交互已被识别为机器学习中的一个重要问题,这对于点击率(CTR)预测任务也是非常重要的。近年来,深度神经网络(DNN)可以自动从原始稀疏功能中学习隐式非线性交互,因此已广泛用于工业CTR预测任务。然而,在DNN中学到的隐式特征交互不能完全保留原始和经验特征交互的完整表示容量(例如,笛卡尔产品)而不会损失。例如,简单地尝试学习特征A和特征B <A,B>作为新特征的显式笛卡尔产品表示可以胜过先前隐式功能交互模型,包括基于分解机(FM)的模型及其变体。在本文中,我们提出了一个共同行动网络(CAN),以近似于显式成对特征交互,而不会引入太多的附加参数。更具体地,给出特征A及其相关的特征B,通过学习两组参数来建模它们的特征交互:1)嵌入特征A和2)以表示特征B的多层Perceptron(MLP)。近似通过通过特征B的MLP网络传递特征A的嵌入可以获得特征交互。我们将这种成对特征交互作为特征合作,并且这种共动网单元可以提供拟合复合物的非常强大的容量功能交互。公共和工业数据集的实验结果表明,可以优于最先进的CTR模型和笛卡尔产品方法。此外,可以在阿里巴巴的显示广告系统中部署,获得12 \%的CTR和8 \%关于每个Mille(RPM)的收入,这是对业务的巨大改进。
translated by 谷歌翻译
在隐性反馈推荐中,将短期偏好纳入推荐系统近年来引起了不断的关注。但是,在历史交互中的意外行为,如偶然点击一些物品,也不能反映用户固有的偏好。现有研究未能模拟意外行为的影响,从而实现劣等的推荐性能。在本文中,我们提出了一种多偏好模型(MPM)来消除意外行为的影响。 MPM首先通过细粒度的偏好模块从最近的历史交互中提取用户的即时偏好。然后,培训意外行为检测器以判断这些即时偏好是否由意外行为偏置。我们还将用户的一般偏好集成在MPM中。最后,执行输出模块以消除意外行为的影响,并集成所有信息以进行最终推荐。我们在电影的两个数据集和电子零售中进行广泛的实验,展示了我们在最先进的方法上的模型的显着改进。实验结果表明,MPM在HR @ 10和NDCG @ 10中获得了大规模的改善,平均与斯trec模型相比相对增加了3.643%和4.107%。我们在https://github.com/chenjie04/mpm/发布我们的代码。
translated by 谷歌翻译
顺序推荐是推荐系统的广泛流行的主题。现有的作品有助于提高基于各种方法的顺序推荐系统的预测能力,例如经常性网络和自我关注机制。然而,他们未能发现和区分项目之间的各种关系,这可能是激励用户行为的潜在因素。在本文中,我们提出了一个边缘增强的全面解散图神经网络(EGD-GNN)模型,以捕获全局项目表示和本地用户意图学习项目之间的关系信息。在全球级别,我们通过所有序列构建全局链接图来模拟项目关系。然后,频道感知的解缠绕学习层被设计成将边缘信息分解为不同的信道,这可以聚合以将目标项从其邻居表示。在本地层面,我们应用一个变化的自动编码器框架来学习用户在当前序列上的意图。我们在三个现实世界数据集中评估我们提出的方法。实验结果表明,我们的模型可以通过最先进的基线获得至关重要的改进,能够区分项目特征。
translated by 谷歌翻译
事实证明,丰富的用户行为数据对于点击率(CTR)预测应用程序具有很高的价值,尤其是在工业推荐,搜索或广告系统中。但是,由于在线服务时间的严格要求,现实世界系统不仅可以充分利用长期用户行为。大多数以前的作品都采用基于检索的策略,在此策略中,首先检索了少数用户行为以进行后续注意。但是,基于检索的方法是最佳的,会造成或多或少的信息损失,并且很难平衡检索算法的有效性和效率。在本文中,我们提出了SDIM(基于采样的深度兴趣建模),这是一种简单但有效的基于采样的端到端方法,用于建模长期用户行为。我们从多个哈希功能中采样,以生成候选项目和用户行为序列中的每个项目的哈希签名,并通过直接收集与具有相同哈希签名的候选项目相关的行为项来获得用户兴趣。我们在理论上和实验上表明,所提出的方法在基于标准的基于注意力的模型上对长期用户行为进行建模,同时更快。我们还介绍了系统中SDIM的部署。具体而言,我们通过设计一个名为BSE(行为序列编码)的单独模块(行为序列编码),将行为序列哈希(这是最耗时的部分)解脱出最耗时的部分。 BSE对于CTR服务器是无延迟的,使我们能够建模极长的用户行为。进行离线和在线实验,以证明SDIM的有效性。 SDIM现在已在线部署在Meituan应用程序的搜索系统中。
translated by 谷歌翻译
建模用户从历史行为中的动态偏好在于现代推荐系统的核心。由于用户兴趣的多样性,最近的进步建议多功能网络将历史行为编码为多个兴趣向量。在实际情况下,通常会一起检索相应的捕获兴趣项目,以获取曝光并收集到培训数据中,从而产生兴趣之间的依赖性。不幸的是,多息网络可能错误地集中在被捕获的利益之间的微妙依赖性上。被这些依赖性误导了,捕获了无关的利益和目标之间的虚假相关性,从而导致训练和测试分布不匹配时预测结果不稳定。在本文中,我们介绍了广泛使用的Hilbert-Schmidt独立标准(HSIC)来衡量被捕获的利益之间的独立性程度,并经验表明,HSIC的持续增加可能会损害模型性能。基于此,我们提出了一个新颖的多息网络,称为深稳定的多功能学习(Desmil),该网络试图通过学习权重以训练样本的学习权重消除捕获的兴趣中微妙的依赖性的影响因果关系。我们对公共建议数据集,大规模工业数据集和合成数据集进行了广泛的实验,这些数据集模拟了分布数据的数据集。实验结果表明,我们提出的Desmil的表现优于最先进的模型。此外,我们还进行了全面的模型分析,以揭示Desmil在一定程度上工作的原因。
translated by 谷歌翻译
对于许多在线平台(例如,视频共享网站,电子商务系统),学习动态用户的偏好已成为越来越重要的组成部分,以提出顺序建议。先前的工作已经做出了许多努力,以基于各种体系结构(例如,经常性的神经网络和自我注意机制)对用户交互序列进行建模项目项目过渡。最近出现的图形神经网络还用作有用的骨干模型,可在顺序推荐方案中捕获项目依赖性。尽管它们有效,但现有的方法却远远集中在具有单一相互作用类型的项目序列表示上,因此仅限于捕获用户和项目之间的动态异质关系结构(例如,页面视图,添加最佳选择,购买,购买)。为了应对这一挑战,我们设计了多行为超毛力增强的变压器框架(MBHT),以捕获短期和长期跨型行为依赖性。具体而言,多尺度变压器配备了低级别的自我注意力,可从细粒度和粗粒水平的共同编码行为感知的顺序模式。此外,我们将全局多行为依赖性纳入HyperGraph神经体系结构中,以自定义的方式捕获层次长期项目相关性。实验结果证明了我们MBHT在不同环境中的各种最新推荐解决方案的优势。进一步的消融研究证明了我们的模型设计和新MBHT框架的好处的有效性。我们的实施代码在以下网址发布:https://github.com/yuh-yang/mbht-kdd22。
translated by 谷歌翻译