对用户偏好的演变进行建模对于推荐系统至关重要。最近,已经研究并实现了基于图形的动态方法以供推荐使用,其中大多数侧重于用户稳定的长期偏好。但是,在实际情况下,用户的短期偏好会随着时间的流逝而动态发展。尽管存在试图捕获它的顺序方法,但是如何使用基于动态图的方法对短期偏好的演变进行建模尚未得到很好的认可。特别是:1)现有方法不会像顺序方法一样明确编码和捕获短期偏好的演变; 2)简单地使用最后几个交互不足以建模变化的趋势。在本文中,我们提出了连续时间顺序推荐(LSTSR)的长期短期偏好模型(LSTSR),以捕获动态图下短期偏好的演变。具体而言,我们明确编码短期优先偏好并通过内存机制进行优化,该内存机制具有三个关键操作:消息,汇总和更新。我们的内存机制不仅可以存储单跳信息,而且还可以通过在线新的交互触发。在五个公共数据集上进行的广泛实验表明,LSTSR始终优于各种线路上许多最先进的建议方法。
translated by 谷歌翻译
Learning vector representations (aka. embeddings) of users and items lies at the core of modern recommender systems. Ranging from early matrix factorization to recently emerged deep learning based methods, existing efforts typically obtain a user's (or an item's) embedding by mapping from pre-existing features that describe the user (or the item), such as ID and attributes. We argue that an inherent drawback of such methods is that, the collaborative signal, which is latent in user-item interactions, is not encoded in the embedding process. As such, the resultant embeddings may not be sufficient to capture the collaborative filtering effect.In this work, we propose to integrate the user-item interactionsmore specifically the bipartite graph structure -into the embedding process. We develop a new recommendation framework Neural Graph Collaborative Filtering (NGCF), which exploits the useritem graph structure by propagating embeddings on it. This leads to the expressive modeling of high-order connectivity in useritem graph, effectively injecting the collaborative signal into the embedding process in an explicit manner. We conduct extensive experiments on three public benchmarks, demonstrating significant improvements over several state-of-the-art models like HOP-Rec [40] and Collaborative Memory Network [5]. Further analysis verifies the importance of embedding propagation for learning better user and item representations, justifying the rationality and effectiveness of NGCF. Codes are available at https://github.com/ xiangwang1223/neural_graph_collaborative_filtering. CCS CONCEPTS• Information systems → Recommender systems. * In the version published in ACM Digital Library, we find some small bugs; the bugs do not change the comparison results and the empirical findings. In this latest version, we update and correct the experimental results (i.e., the preprocessing of Yelp2018 dataset and the ndcg metric). All updates are highlighted in footnotes.
translated by 谷歌翻译
对于许多在线平台(例如,视频共享网站,电子商务系统),学习动态用户的偏好已成为越来越重要的组成部分,以提出顺序建议。先前的工作已经做出了许多努力,以基于各种体系结构(例如,经常性的神经网络和自我注意机制)对用户交互序列进行建模项目项目过渡。最近出现的图形神经网络还用作有用的骨干模型,可在顺序推荐方案中捕获项目依赖性。尽管它们有效,但现有的方法却远远集中在具有单一相互作用类型的项目序列表示上,因此仅限于捕获用户和项目之间的动态异质关系结构(例如,页面视图,添加最佳选择,购买,购买)。为了应对这一挑战,我们设计了多行为超毛力增强的变压器框架(MBHT),以捕获短期和长期跨型行为依赖性。具体而言,多尺度变压器配备了低级别的自我注意力,可从细粒度和粗粒水平的共同编码行为感知的顺序模式。此外,我们将全局多行为依赖性纳入HyperGraph神经体系结构中,以自定义的方式捕获层次长期项目相关性。实验结果证明了我们MBHT在不同环境中的各种最新推荐解决方案的优势。进一步的消融研究证明了我们的模型设计和新MBHT框架的好处的有效性。我们的实施代码在以下网址发布:https://github.com/yuh-yang/mbht-kdd22。
translated by 谷歌翻译
共享符号跨域顺序推荐(SCSR)任务旨在通过利用多个域中的混合用户行为推荐下一个项目。随着越来越多的用户倾向于在不同的平台上注册并与他人共享访问特定于域的服务,它正在引起极大的研究关注。现有关于SCSR的作品主要依赖于基于复发的神经网络(RNN)模型的采矿顺序模式,这些模型受到以下局限性:1)基于RNN的方法,基于RNN的方法绝大多数目标是发现单用户行为中的顺序依赖性。它们的表现不足以捕获SCSR中多个实体之间的关系。 2)所有现有方法通过潜在空间中的知识转移桥接两个域,并忽略显式的跨域图结构。 3)没有现有研究考虑项目之间的时间间隔信息,这对于表征不同项目和学习判别性表示的顺序建议至关重要。在这项工作中,我们提出了一种新的基于图的解决方案,即TIDA-GCN,以应对上述挑战。具体来说,我们首先将每个域中的用户和项目链接为图。然后,我们设计了一个域感知图形卷积网络,以学习用户特异性节点表示。为了充分说明用户对项目的域特异性偏好,进一步开发了两个有效的注意机制,以选择性地指导消息传递过程。此外,为了进一步增强项目和帐户级的表示学习,我们将时间间隔纳入消息传递中,并为学习项目的交互式特征设计一个帐户意识的自我发项模块。实验证明了我们提出的方法从各个方面的优越性。
translated by 谷歌翻译
顺序推荐(SR)通过对用户在项目之间的过境方式进行建模来表征用户行为不断发展的模式。但是,简短的交互序列限制了现有SR的性能。为了解决这个问题,我们专注于本文中的跨域顺序推荐(CDSR),该建议旨在利用其他域中的信息来提高单个域的顺序建议性能。解决CDSR具有挑战性。一方面,如何保留单个领域的偏好以及整合跨域影响仍然是一个基本问题。另一方面,由于合并序列的长度有限,因此仅利用来自其他域的知识来完全解决数据稀疏问题。为了应对挑战,我们提出了DDGHM,这是CDSR问题的新型框架,其中包括两个主要模块,即双动态图形建模和混合度量训练。前者通过动态构造两级图,即局部图和全局图,捕获内域和域间顺序跃迁,并将它们与融合的细心门控机制结合在一起。后者通过采用混合度量学习来增强用户和项目表示形式,包括实现保持一致性和对比度度量的协作指标,以确保均匀性,以进一步减轻数据稀少性问题并提高预测准确性。我们在两个基准数据集上进行实验,结果证明了DDHMG的有效性。
translated by 谷歌翻译
给定一系列集合,其中每个集合与时间戳关联并包含任意数量的元素,时间集的任务预测旨在预测后续集合中的元素。先前对时间集预测的研究主要通过从自己的序列中学习来捕获每个用户的进化偏好。尽管有见地,但我们认为:1)不同用户序列中潜在的协作信号是必不可少的,但尚未被利用; 2)用户还倾向于显示固定的偏好,而现有方法未能考虑。为此,我们提出了一个集成的学习框架,以对时间集预测的用户的进化和固定偏好进行建模,该预测首先通过按时间顺序排列所有用户群的交互来构建通用序列,然后在每个用户集中学习相互作用。特别是,对于每个用户集的交互,我们首先设计一个进化用户偏好建模组件,以跟踪用户的时间不断发展的偏好,并在不同用户之间利用潜在的协作信号。该组件维护一个存储库来存储相关用户和元素的记忆,并根据当前编码的消息和过去的记忆不断更新其记忆。然后,我们设计了一个固定的用户偏好模型模块,以根据历史序列来发现每个用户的个性化特征,该模块从双重角度自适应地汇总了以前相互作用的元素,并在用户和元素的嵌入方式的指导下。最后,我们开发了一种设定批次算法来提高模型效率,该算法可以提前创建时间一致的批次,并平均实现3.5倍的训练速度。现实世界数据集的实验证明了我们方法的有效性和良好的解释性。
translated by 谷歌翻译
图形神经网络(GNN)已显示为与用户项目交互图建模的协作过滤(CF)的有前途的解决方案。现有基于GNN的推荐系统的关键思想是递归执行沿用户项目交互边缘传递的消息,以完善编码的嵌入。然而,尽管它们有效,但当前的大多数推荐模型都依赖于足够和高质量的培训数据,因此学习的表示形式可以很好地捕获准确的用户偏好。用户行为数据在许多实际建议方案中通常很嘈杂,并且表现出偏斜的分布,这可能会导致基于GNN的模型中的次优表示性能。在本文中,我们提出了SHT,这是一种新颖的自我监视的超盖变压器框架(SHT),该框架(SHT)通过以明确的方式探索全球协作关系来增强用户表示。具体而言,我们首先赋予图形神经CF范式,以通过HyperGraph Transformer网络维护用户和项目之间的全局协作效果。在蒸馏的全球环境中,提出了一个跨视图生成的自我监督学习组件,用于对用户项目交互图的数据增强,以增强推荐系统的鲁棒性。广泛的实验表明,SHT可以显着改善各种最新基线的性能。进一步的消融研究表明,我们的SHT推荐框架在减轻数据稀疏性和噪声问题方面具有出色的表示能力。源代码和评估数据集可在以下网址获得:https://github.com/akaxlh/sht。
translated by 谷歌翻译
最近,深度学习模型已在工业推荐系统中广泛传播,并提高了建议质量。尽管取得了杰出的成功,但任务吸引推荐系统的设计通常需要域专家的手动功能工程和建筑工程。为了减轻人类的努力,我们探索了神经体系结构搜索(NAS)的潜力,并在推荐系统中引入了自动行为建模,互动探索和多层感知器(MLP)研究的AMEIR。 Ameir的核心贡献是三阶段的搜索空间和量身定制的三步搜索管道。具体而言,Ameir将完整的建议模型分为行为建模,交互探索,MLP聚合的三个阶段,并引入了一个新颖的搜索空间,其中包含三个量身定制的子空间,这些子空间涵盖了大多数现有方法,从而允许搜索更好的模型。为了有效,有效地找到理想的体系结构,Ameir在三个阶段逐渐推荐中实现了一次弹奏随机搜索,并将搜索结果组装为最终结果。进一步的分析表明,Ameir的搜索空间可以涵盖大多数代表性推荐模型,这证明了我们设计的普遍性。在各种情况下进行的广泛实验表明,AMEIR的表现优于精心制作的手动设计的竞争基准和领先的算法复杂的NAS方法,具有较低的模型复杂性和可比的时间成本,表明所提出的方法的效率,效率和鲁棒性。
translated by 谷歌翻译
预测短期交互会话的下一个交互是基于会话的推荐中的一个具有挑战性的任务。几乎所有现有的作品都依赖于项目转换模式,并在建模用户偏好时忽略用户历史会话的影响,这通常会导致非个性化推荐。此外,基于现有的个性化会话的推荐人仅基于当前用户的会话捕获用户首选项,而是忽略来自其他用户的历史会话的有用物品转换模式。为了解决这些问题,我们提出了一种新颖的异构全球图形神经网络(HG-GNN)以以微妙的方式利用所有会话的物品过渡,以便更好地推断用户偏好与当前和历史会话。为了有效利用所有用户的所有会话转换,我们提出了一种新的异构全局图,该图包含会话,用户项交互和全局共同发生项目的项目转换。此外,为了综合地从会话中捕获用户偏好,我们建议通过两个图形增强偏好编码器学习来自全局图的两个用户表示。具体地,我们在异构全球图上设计一种新的异构图形神经网络(HGNN),以了解具有丰富语义的长期用户偏好和项目表示。基于HGNN,我们提出了当前偏好编码器和历史偏好编码器,分别捕获来自当前和历史会话的不同级别的用户偏好。为实现个性化建议,我们将用户当前偏好和历史利益的表示集成到生成最终用户首选项表示。三个真实数据集的广泛实验结果表明,我们的模型优于其他最先进的方法。
translated by 谷歌翻译
图形神经网络(GNN)已通过隐式捕获协作效应的消息通知成功地采用了推荐系统。然而,大多数现有的推荐消息机制是直接从GNN继承的,而无需仔细检查捕获的协作效果是否会受益于用户偏好的预测。在本文中,我们首先分析了消息传播如何捕获协作效应,并提出了面向建议的拓扑指标,共同的相互作用比率(CIR),该比例(CIR)衡量了节点的特定邻居与其其余邻居之间的相互作用水平。在证明了利用邻居与高级CIR合作的好处之后,我们提出了一项推荐销售的GNN,协作意识图形卷积网络(CAGCN),它超出了1-Weisfeiler-Lehman(1-WL)测试,以区分非优质 - 图形图形。六个基准数据集的实验表明,最佳CAGCN变体的表现优于最具代表性的基于GNN的建议模型LightGCN,在Recess@20中的近10%,并且达到了80 \%的加速。我们的代码可在https://github.com/yuwvandy/cagcn上公开获取。
translated by 谷歌翻译
Session-Based Recommenders (SBRs) aim to predict users' next preferences regard to their previous interactions in sessions while there is no historical information about them. Modern SBRs utilize deep neural networks to map users' current interest(s) during an ongoing session to a latent space so that their next preference can be predicted. Although state-of-art SBR models achieve satisfactory results, most focus on studying the sequence of events inside sessions while ignoring temporal details of those events. In this paper, we examine the potential of session temporal information in enhancing the performance of SBRs, conceivably by reflecting the momentary interests of anonymous users or their mindset shifts during sessions. We propose the STAR framework, which utilizes the time intervals between events within sessions to construct more informative representations for items and sessions. Our mechanism revises session representation by embedding time intervals without employing discretization. Empirical results on Yoochoose and Diginetica datasets show that the suggested method outperforms the state-of-the-art baseline models in Recall and MRR criteria.
translated by 谷歌翻译
在隐性反馈推荐中,将短期偏好纳入推荐系统近年来引起了不断的关注。但是,在历史交互中的意外行为,如偶然点击一些物品,也不能反映用户固有的偏好。现有研究未能模拟意外行为的影响,从而实现劣等的推荐性能。在本文中,我们提出了一种多偏好模型(MPM)来消除意外行为的影响。 MPM首先通过细粒度的偏好模块从最近的历史交互中提取用户的即时偏好。然后,培训意外行为检测器以判断这些即时偏好是否由意外行为偏置。我们还将用户的一般偏好集成在MPM中。最后,执行输出模块以消除意外行为的影响,并集成所有信息以进行最终推荐。我们在电影的两个数据集和电子零售中进行广泛的实验,展示了我们在最先进的方法上的模型的显着改进。实验结果表明,MPM在HR @ 10和NDCG @ 10中获得了大规模的改善,平均与斯trec模型相比相对增加了3.643%和4.107%。我们在https://github.com/chenjie04/mpm/发布我们的代码。
translated by 谷歌翻译
许多以前的研究旨在增加具有深度神经网络技术的协同过滤,以实现更好的推荐性能。但是,大多数现有的基于深度学习的推荐系统专为建模单数类型的用户项目交互行为而设计,这几乎无法蒸馏用户和项目之间的异构关系。在实际推荐方案中,存在多重的用户行为,例如浏览和购买。由于用户的多行为模式在不同的项目上俯视,现有推荐方法不足以捕获来自用户多行为数据的异构协作信号。灵感灵感来自图形神经网络的结构化数据建模,这项工作提出了一个图形神经多行为增强建议(GNMR)框架,其明确地模拟了基于图形的消息传递体系结构下不同类型的用户项目交互之间的依赖性。 GNMR向关系聚合网络设计为模拟交互异质性,并且通过用户项交互图递归地执行相邻节点之间的嵌入传播。实体世界推荐数据集的实验表明,我们的GNMR始终如一地优于最先进的方法。源代码可在https://github.com/akaxlh/gnmr中获得。
translated by 谷歌翻译
现代推荐系统需要适应用户偏好和项目人气的变化。这种问题被称为时间动态问题,它是推荐系统建模中的主要挑战之一。与流行的反复建模方法不同,我们通过使用基于轨迹的元学习来模型依赖性将一个名为LeNprec的新解决方案提出了一个名为LeNprec的新解决方案。 Leaprec通过命名为全局时间Leap(GTL)的两个补充组件来表征时间动态,并订购时间Leap(OTL)。通过设计,GTL通过找到无序时间数据的最短学习路径来学习长期模式。协同地,OTL通过考虑时间数据的顺序性质来学习短期模式。我们的实验结果表明,LeNPrec在几个数据集和推荐指标上始终如一地优于最先进的方法。此外,我们提供了GTL和OTL之间的相互作用的实证研究,显示了长期和短期建模的影响。
translated by 谷歌翻译
Bundle建议旨在向用户推荐整个项目。然而,他们通常忽略了用户对采用项目的意图的多样性,并且无法解散用户在表示中的意图。在捆绑建议的实际情况下,用户的意图可以自然分布在该用户的不同捆绑中(全局视图),而捆绑包可能包含用户的多个意图(本地视图)。每个视图都有其意图解开的优势:1)从全球视图中,涉及更多项目来呈现每个意图,这可以更清楚地证明用户在每个意图下的喜好。 2)从本地视图中,它可以揭示每个意图下的项目之间的关联,因为同一捆绑包中的项目彼此高度相关。为此,我们提出了一个名为Multi-View Intentangle图形网络(MIDGN)的新型模型,该模型能够精确,全面地捕获用户意图的多样性和项目的关联,并在更精细的粒度上。具体而言,MIDGN分别从两个不同的角度解开了用户的意图:1)在全球级别,中型中MIDGN将用户的意图与捆绑关系相结合; 2)在本地级别,MIDGN将用户的意图与每个捆绑包中的项目结合在一起。同时,我们比较用户的意图在对比度学习框架下从不同观点中解散,以提高学习意图。在两个基准数据集上进行的广泛实验表明,中期的表现分别超过10.7%和26.8%。
translated by 谷歌翻译
受到计算机愿景和语言理解的深度学习的巨大成功的影响,建议的研究已经转移到发明基于神经网络的新推荐模型。近年来,我们在开发神经推荐模型方面目睹了显着进展,这概括和超越了传统的推荐模型,由于神经网络的强烈代表性。在本调查论文中,我们从建议建模与准确性目标的角度进行了系统审查,旨在总结该领域,促进研究人员和从业者在推荐系统上工作的研究人员和从业者。具体而具体基于推荐建模期间的数据使用,我们将工作划分为协作过滤和信息丰富的建议:1)协作滤波,其利用用户项目交互数据的关键来源; 2)内容丰富的建议,其另外利用与用户和项目相关的侧面信息,如用户配置文件和项目知识图; 3)时间/顺序推荐,其考虑与交互相关的上下文信息,例如时间,位置和过去的交互。在为每种类型审查代表性工作后,我们终于讨论了这一领域的一些有希望的方向。
translated by 谷歌翻译
用户嵌入(用户的矢量化表示)对于推荐系统至关重要。已经提出了许多方法来为用户构建代表性,以找到用于检索任务的类似项目,并且已被证明在工业推荐系统中也有效。最近,人们发现使用多个嵌入式代表用户的能力,希望每个嵌入代表用户对某个主题的兴趣。通过多息表示,重要的是要对用户对不同主题的喜好进行建模以及偏好如何随时间变化。但是,现有方法要么无法估算用户对每个利息的亲和力,要么不合理地假设每个用户的每一个利息随时间而逐渐消失,从而损害了候选人检索的召回。在本文中,我们提出了多功能偏好(MIP)模型,这种方法不仅可以通过更有效地使用用户的顺序参与来为用户产生多种利益因此,可以按比例地从每个利息中检索候选人。在各种工业规模的数据集上进行了广泛的实验,以证明我们方法的有效性。
translated by 谷歌翻译
Dynamic interaction graphs have been widely adopted to model the evolution of user-item interactions over time. There are two crucial factors when modelling user preferences for link prediction in dynamic interaction graphs: 1) collaborative relationship among users and 2) user personalized interaction patterns. Existing methods often implicitly consider these two factors together, which may lead to noisy user modelling when the two factors diverge. In addition, they usually require time-consuming parameter learning with back-propagation, which is prohibitive for real-time user preference modelling. To this end, this paper proposes FreeGEM, a parameter-free dynamic graph embedding method for link prediction. Firstly, to take advantage of the collaborative relationships, we propose an incremental graph embedding engine to obtain user/item embeddings, which is an Online-Monitor-Offline architecture consisting of an Online module to approximately embed users/items over time, a Monitor module to estimate the approximation error in real time and an Offline module to calibrate the user/item embeddings when the online approximation errors exceed a threshold. Meanwhile, we integrate attribute information into the model, which enables FreeGEM to better model users belonging to some under represented groups. Secondly, we design a personalized dynamic interaction pattern modeller, which combines dynamic time decay with attention mechanism to model user short-term interests. Experimental results on two link prediction tasks show that FreeGEM can outperform the state-of-the-art methods in accuracy while achieving over 36X improvement in efficiency. All code and datasets can be found in https://github.com/FudanCISL/FreeGEM.
translated by 谷歌翻译
基于多利息框架的顺序推荐将用户最近的交互序列模拟到多个不同的兴趣向量中,因为单个低维向量不能完全代表用户兴趣的分集。然而,大多数现有模型只拦截用户最近的交互行为作为训练数据,丢弃大量的历史相互作用序列。这可能会提出两个问题。一方面,缺少反映用户多重兴趣的数据;另一方面,历史用户项交互中的项目之间的共同发生不会完全探索。为了解决这两个问题,本文提出了一种名为“全局交互感知多息框架的新型顺序推荐模型,用于顺序推荐(Gimirec)”。具体地,首先提出了一种全局上下文提取模块而不引入任何外部信息,该外部信息基于每个项目对的受约束的共生发生号码和它们的时间间隔从所有用户的历史交互序列的时间间隔计算加权共生发生矩阵通过使用简化的图形卷积获得每个项目的全局上下文嵌入。其次,捕获每个项目对最近的每个用户的交互序列的时间间隔并与全局上下文项嵌入以获取个性化项目嵌入的全局上下文项。最后,应用了一种基于自我关注的多息框架来学习用户对顺序推荐的不同兴趣。在亚马逊书籍的三个现实世界数据集上进行了广泛的实验,淘宝买和亚马逊 - 混合动力表明,Gimirec在召回,NDCG和命中率指标上的表现明显优于最先进的方法。此外,所提出的全局上下文提取模块可以很容易地移植到大多数顺序推荐模型。
translated by 谷歌翻译
顺序推荐是推荐系统的广泛流行的主题。现有的作品有助于提高基于各种方法的顺序推荐系统的预测能力,例如经常性网络和自我关注机制。然而,他们未能发现和区分项目之间的各种关系,这可能是激励用户行为的潜在因素。在本文中,我们提出了一个边缘增强的全面解散图神经网络(EGD-GNN)模型,以捕获全局项目表示和本地用户意图学习项目之间的关系信息。在全球级别,我们通过所有序列构建全局链接图来模拟项目关系。然后,频道感知的解缠绕学习层被设计成将边缘信息分解为不同的信道,这可以聚合以将目标项从其邻居表示。在本地层面,我们应用一个变化的自动编码器框架来学习用户在当前序列上的意图。我们在三个现实世界数据集中评估我们提出的方法。实验结果表明,我们的模型可以通过最先进的基线获得至关重要的改进,能够区分项目特征。
translated by 谷歌翻译