人类智能能够首先学习一些基本技能,以解决基本问题,然后将这种基本技能融合到解决复杂或新问题的复杂技能中。例如,基本技能``挖洞'',``放树,'''``回填''和``浇水'''构成复杂的技能``植物''。此外,可以重复使用一些基本技能来解决其他问题。例如,基本技能``挖洞''不仅可以用于种植树木,而且还可以用于采矿,建造排水管或垃圾填埋场。学习基本技能并重复使用各种任务的能力对人类非常重要,因为它有助于避免学习太多的技能来解决每个任务,并可以通过仅学习几个数量来解决组成数量的任务数量基本技能,可以节省人脑中大量的记忆和计算。我们认为,机器智能还应捕捉学习基本技能并通过构成复杂技能的能力。在计算机科学语言中,每种基本技能都是“模块”,它是一个可重复使用的具体含义的网络,并执行特定的基本操作。将模块组装成更大的``模型'',以完成更复杂的任务。组装过程适应输入或任务,即,对于给定的任务,应该将模块组装成解决任务的最合适的模型中。结果,不同的输入或任务可能具有不同的组装模型,从而实现自组装AI。在这项工作中,我们提出了模块化的自适应神经体系结构搜索(MANAS),以演示上述想法。不同数据集上的实验表明,MANAS组装的自适应体系结构优于静态全局体系结构。进一步的实验和经验分析为魔力的有效性提供了见解。
translated by 谷歌翻译
图表可以表示实体之间的关系信息,图形结构广泛用于许多智能任务,例如搜索,推荐和问题应答。然而,实际上大多数图形结构数据都遭受了不完整性,因此链路预测成为一个重要的研究问题。虽然提出了许多模型来用于链路预测,但以下两个问题仍然仍然较少:(1)大多数方法在不利用相关链路中使用丰富的信息,大多数方法都独立模型,并且(2)现有型号主要基于关联设计学习并没有考虑推理。通过这些问题,在本文中,我们提出了图表协作推理(GCR),它可以使用邻居与逻辑推理视角的关系中的关系推理。我们提供了一种简单的方法来将图形结构转换为逻辑表达式,以便链路预测任务可以转换为神经逻辑推理问题。我们应用逻辑受限的神经模块根据逻辑表达式构建网络架构,并使用反向传播以有效地学习模型参数,这在统一架构中桥接可分辨率的学习和象征性推理。为了展示我们工作的有效性,我们对图形相关任务进行实验,例如基于常用的基准数据集的链路预测和推荐,我们的图表合作推理方法实现了最先进的性能。
translated by 谷歌翻译
在大数据时代,推荐系统在我们日常生活中的关键信息过滤表现出了杰出的成功。近年来,推荐系统的技术发展,从感知学习到认知推理,这些认知推理将推荐任务作为逻辑推理的过程,并取得了重大改进。但是,推理中的逻辑陈述隐含地承认有序无关紧要,甚至没有考虑在许多建议任务中起重要作用的时间信息。此外,与时间上下文合并的建议模型往往是自我集中的,即自动更加(少)将相关性(不相关)分别集中在相关性上。为了解决这些问题,在本文中,我们提出了一种基于神经协作推理(TISANCR)的推荐模型的时间感知自我注意力,该模型将时间模式和自我注意机制集成到基于推理的建议中。特别是,以相对时间为代表的时间模式,提供上下文和辅助信息来表征用户在建议方面的偏好,而自我注意力则是利用自我注意力来提炼信息的模式并抑制无关紧要的。因此,自我煽动的时间信息的融合提供了对用户偏好的更深入表示。基准数据集的广泛实验表明,所提出的Tisancr取得了重大改进,并始终优于最先进的建议方法。
translated by 谷歌翻译
最近,深度学习模型已在工业推荐系统中广泛传播,并提高了建议质量。尽管取得了杰出的成功,但任务吸引推荐系统的设计通常需要域专家的手动功能工程和建筑工程。为了减轻人类的努力,我们探索了神经体系结构搜索(NAS)的潜力,并在推荐系统中引入了自动行为建模,互动探索和多层感知器(MLP)研究的AMEIR。 Ameir的核心贡献是三阶段的搜索空间和量身定制的三步搜索管道。具体而言,Ameir将完整的建议模型分为行为建模,交互探索,MLP聚合的三个阶段,并引入了一个新颖的搜索空间,其中包含三个量身定制的子空间,这些子空间涵盖了大多数现有方法,从而允许搜索更好的模型。为了有效,有效地找到理想的体系结构,Ameir在三个阶段逐渐推荐中实现了一次弹奏随机搜索,并将搜索结果组装为最终结果。进一步的分析表明,Ameir的搜索空间可以涵盖大多数代表性推荐模型,这证明了我们设计的普遍性。在各种情况下进行的广泛实验表明,AMEIR的表现优于精心制作的手动设计的竞争基准和领先的算法复杂的NAS方法,具有较低的模型复杂性和可比的时间成本,表明所提出的方法的效率,效率和鲁棒性。
translated by 谷歌翻译
共享符合跨域顺序推荐(SCSR)是一项新兴而又具有挑战性的任务,在顺序建议中同时考虑共享符号和跨域特征。 SCSR上的现有作品主要基于复发性神经网络(RNN)和图神经网络(GNN),但他们忽略了一个事实,尽管多个用户共享一个帐户,但一次主要由一个用户占用。这一观察结果促使我们通过专注于其最近的行为来学习更准确的用户特定帐户表示。此外,尽管现有的作品降低了较低的权重与无关紧要的相互作用,但它们仍可能稀释域信息并阻碍跨域建议。为了解决上述问题,我们提出了一种基于增强学习的解决方案,即RL-ISN,该解决方案由基本的跨域推荐剂和基于强化的学习域滤波器组成。具体而言,要在“共享”方案中对帐户表示形式进行建模,基本推荐人首先将用户作为潜在用户的混合行为群,然后利用注意力模型在上面进行用户身份识别。为了减少无关域信息的影响,我们将域过滤器作为层次强化学习任务,在该任务中,使用高级任务来决定是否修改整个转移的序列进一步执行任务以确定是否删除其中的每个交互。为了评估解决方案的性能,我们对两个现实世界数据集进行了广泛的实验,并且实验结果证明了与最先进的建议方法相比,我们的RL-ISN方法的优越性。
translated by 谷歌翻译
许多现代的顺序推荐系统使用深层神经网络,可以有效地估计项目的相关性,但需要大量时间进行训练。慢速培训增加了费用,阻碍了产品开发时间表,并防止该模型定期更新以适应不断变化的用户偏好。培训这样的顺序模型涉及对过去的用户互动进行适当采样以创建现实的培训目标。现有的培训目标有局限性。例如,下一个项目预测永远不会将序列的开头用作学习目标,从而可能丢弃有价值的数据。另一方面,Bert4Rec使用的项目掩盖仅与顺序建议的目标无关。因此,它需要更多的时间来获得有效的模型。因此,我们提出了一个基于新颖的序列训练目标采样,以解决这两个局限性。我们将我们的方法应用于最近和最新的模型架构,例如Gru4Rec,Caser和Sasrec。我们表明,通过我们的方法增强的模型可以实现超过或非常接近bert4rec的状态的性能,但训练时间却少得多。
translated by 谷歌翻译
由于知识图表提供的丰富信息,基于路径的可解释的推荐系统的最新进展引起了更大的关注。最现有的可解释的建议仅利用静态知识图表并忽略动态用户项演进,导致不太令人信服和不准确的解释。虽然有一些作品,但意识到建模用户的时间顺序行为可以提高推荐器系统的性能和解释性,其中大多数只关注用户在路径内的顺序交互或独立和单独的推荐机制。在本文中,我们提出了一种新颖的时间元路径指导可解释的推荐利用加强学习(TMER-RL),它利用了连续项目之间的加强项 - 项目路径建模,其注意机制在动态知识图上顺序模拟动态用户项演进用于解释的建议。与使用繁重的经常性神经网络模拟时间信息的现有作品相比,我们提出了简单但有效的神经网络,以捕获用户的历史项目功能和基于路径的上下文,以表征下一个购买的项目。与最近的强大基线相比,两个真实数据集的TMMER广泛评估显示了最先进的表现。
translated by 谷歌翻译
预测短期交互会话的下一个交互是基于会话的推荐中的一个具有挑战性的任务。几乎所有现有的作品都依赖于项目转换模式,并在建模用户偏好时忽略用户历史会话的影响,这通常会导致非个性化推荐。此外,基于现有的个性化会话的推荐人仅基于当前用户的会话捕获用户首选项,而是忽略来自其他用户的历史会话的有用物品转换模式。为了解决这些问题,我们提出了一种新颖的异构全球图形神经网络(HG-GNN)以以微妙的方式利用所有会话的物品过渡,以便更好地推断用户偏好与当前和历史会话。为了有效利用所有用户的所有会话转换,我们提出了一种新的异构全局图,该图包含会话,用户项交互和全局共同发生项目的项目转换。此外,为了综合地从会话中捕获用户偏好,我们建议通过两个图形增强偏好编码器学习来自全局图的两个用户表示。具体地,我们在异构全球图上设计一种新的异构图形神经网络(HGNN),以了解具有丰富语义的长期用户偏好和项目表示。基于HGNN,我们提出了当前偏好编码器和历史偏好编码器,分别捕获来自当前和历史会话的不同级别的用户偏好。为实现个性化建议,我们将用户当前偏好和历史利益的表示集成到生成最终用户首选项表示。三个真实数据集的广泛实验结果表明,我们的模型优于其他最先进的方法。
translated by 谷歌翻译
推荐兴趣点是一个困难的问题,需要从基于位置的社交媒体平台中提取精确的位置信息。对于这种位置感知的推荐系统而言,另一个具有挑战性和关键的问题是根据用户的历史行为对用户的偏好进行建模。我们建议使用Transformers的双向编码器表示的位置感知建议系统,以便为用户提供基于位置的建议。提出的模型包含位置数据和用户偏好。与在序列中预测每个位置的下一项(位置)相比,我们的模型可以为用户提供更相关的结果。基准数据集上的广泛实验表明,我们的模型始终优于各种最新的顺序模型。
translated by 谷歌翻译
异构信息网络(HIN)捕获各种实体之间的复杂关系,并已广泛用于提高各种数据挖掘任务的有效性,例如在推荐系统中。许多现有的文欣推荐算法利用手工制作的元路径来提取来自网络的语义信息。这些算法依赖于广泛的域知识,可以选择最佳的元路径集。对于HIN与众多节点和链路类型高度复杂的应用程序,手工制作方法的方法太繁琐,并且容易出错。为了解决这个问题,我们提出了基于加强学习的元路径选择(RMS)框架,以选择有效的元路径,并将它们包含在现有的基于元路径的推荐中。为了识别高质量的元路径,RMS列举了基于加强学习(RL)的策略网络(代理),从而从下游推荐任务的性能获取奖励。我们设计一个基于HIN的推荐模型,HREC,有效地使用元路径信息。我们将HREC与RMS进行了整合并导出了我们的推荐解决方案,RMS-HREC,它自动使用有效的元路径。实验对实时数据集表明,我们的算法通过自动捕获重要元路径,可以显着提高推荐模型的性能。
translated by 谷歌翻译
在隐性反馈推荐中,将短期偏好纳入推荐系统近年来引起了不断的关注。但是,在历史交互中的意外行为,如偶然点击一些物品,也不能反映用户固有的偏好。现有研究未能模拟意外行为的影响,从而实现劣等的推荐性能。在本文中,我们提出了一种多偏好模型(MPM)来消除意外行为的影响。 MPM首先通过细粒度的偏好模块从最近的历史交互中提取用户的即时偏好。然后,培训意外行为检测器以判断这些即时偏好是否由意外行为偏置。我们还将用户的一般偏好集成在MPM中。最后,执行输出模块以消除意外行为的影响,并集成所有信息以进行最终推荐。我们在电影的两个数据集和电子零售中进行广泛的实验,展示了我们在最先进的方法上的模型的显着改进。实验结果表明,MPM在HR @ 10和NDCG @ 10中获得了大规模的改善,平均与斯trec模型相比相对增加了3.643%和4.107%。我们在https://github.com/chenjie04/mpm/发布我们的代码。
translated by 谷歌翻译
随着深度学习技术扩展到现实世界推荐任务,已经开发出许多深度神经网络的协作滤波(CF)模型基于各种神经结构,例如多层的神经架构将用户项目交互项目投影到潜伏特征空间中Perceptron,自动编码器和图形神经网络。然而,大多数现有的协作过滤系统不充分设计用于处理缺失的数据。特别是,为了在训练阶段注入负信号,这些解决方案很大程度上依赖于未观察到的用户项交互,并且简单地将它们视为负实例,这带来了推荐性能下降。为了解决问题,我们开发了一个协作反射增强的AutoEncoder网络(Cranet),它能够探索从观察到和未观察的用户项交互的可转移知识。 Cranet的网络架构由具有反射接收器网络的集成结构和信息融合自动统计器模块形成,其推荐框架具有在互动和非互动项目上编码隐式用户的成对偏好的能力。另外,基于参数正规化的捆绑重量方案旨在对两级颅骨模型进行鲁棒联合训练。我们终于在对应于两个推荐任务的四个不同基准数据集上进行了实验验证了Cranet,以表明,与各种最先进的推荐技术相比,脱叠用户项交互的负信号提高了性能。我们的源代码可在https://github.com/akaxlh/cranet上获得。
translated by 谷歌翻译
顺序建议要求推荐人从已记录的用户行为数据中捕获不断发展的行为特征,以进行准确的建议。但是,用户行为序列被视为具有多个正在进行的线程交织在一起的脚本。我们发现,只有一小部分关键行为才能发展为用户的未来动作。结果,用户的未来行为很难预测。我们将每个用户作为行为途径的顺序行为的特征得出结论。不同的用户具有独特的行为途径。在现有的顺序模型中,变压器在捕获全球依赖性特征方面表现出很大的能力。但是,这些模型主要使用自我注意力的机制在所有先前的行为上提供了密集的分布,这使得最终预测被未调整给每个用户的微不足道行为所淹没。在本文中,我们使用新颖的途径注意机制构建了推荐变压器(RETR)。 REOR可以动态地计划为每个用户指定的行为途径,并通过此行为途径很少激活网络,以有效捕获对推荐有用的演变模式。关键设计是一种博学的二进制途径,以防止行为途径被微不足道的行为淹没。我们从经验上验证了RERO在七个现实世界数据集中的有效性,并产生了最先进的性能。
translated by 谷歌翻译
本文研究了知识图的推荐系统,可以有效地解决数据稀疏和冷启动的问题。最近,已经为这个问题开发了各种方法,这通常试图根据其表示,学习用户和物品的有效陈述,然后根据其表示将项目匹配。虽然这些方法已经表现得非常有效,但它们缺乏良好的解释,这对推荐系统至关重要。在本文中,我们采取了不同的路线,并提出通过从用户到项目的有意义路径来创造建议。具体地,我们将问题作为顺序决策过程,其中目标用户被定义为初始状态,并且图中的边缘被定义为动作。我们根据现有的最先进方法塑造奖励,然后使用策略梯度方法培训策略函数。三个现实世界数据集的实验结果表明,我们的提出方法不仅提供有效的建议,还提供了良好的解释。
translated by 谷歌翻译
Self-attentive transformer models have recently been shown to solve the next item recommendation task very efficiently. The learned attention weights capture sequential dynamics in user behavior and generalize well. Motivated by the special structure of learned parameter space, we question if it is possible to mimic it with an alternative and more lightweight approach. We develop a new tensor factorization-based model that ingrains the structural knowledge about sequential data within the learning process. We demonstrate how certain properties of a self-attention network can be reproduced with our approach based on special Hankel matrix representation. The resulting model has a shallow linear architecture and compares competitively to its neural counterpart.
translated by 谷歌翻译
因果图作为因果建模的有效和强大的工具,通常被假定为有向的无环图(DAG)。但是,推荐系统通常涉及反馈循环,该反馈循环定义为推荐项目的循环过程,将用户反馈纳入模型更新以及重复该过程。结果,重要的是将循环纳入因果图中,以准确地对推荐系统进行动态和迭代数据生成过程。但是,反馈回路并不总是有益的,因为随着时间的流逝,它们可能会鼓励越来越狭窄的内容暴露,如果无人看管的话,可能会导致回声室。结果,重要的是要了解何时会导致Echo Chambers以及如何减轻回声室而不会损害建议性能。在本文中,我们设计了一个带有循环的因果图,以描述推荐的动态过程。然后,我们采取马尔可夫工艺来分析回声室的数学特性,例如导致回声腔的条件。受理论分析的启发,我们提出了一个动态的因果协作过滤($ \ partial $ ccf)模型,该模型估算了用户基于后门调整的项目的干预后偏好,并通过反事实推理减轻了Echo Echo Chamber。在现实世界数据集上进行了多个实验,结果表明,我们的框架可以比其他最先进的框架更好地减轻回声室,同时通过基本建议模型实现可比的建议性能。
translated by 谷歌翻译
在点击率(CTR)预测方案中,用户的顺序行为很好地利用来捕获最近文献中的用户兴趣。然而,尽管正在广泛研究,但这些顺序方法仍然存在三个限制。首先,现有方法主要利用对用户行为的注意,这并不总是适用于CTR预测,因为用户经常点击与任何历史行为无关的新产品。其次,在真实场景中,很久以前存在许多具有运营的用户,但最近的次数相对不活跃。因此,难以通过早期行为精确地捕获用户的当前偏好。第三,不同特征子空间中用户历史行为的多个表示主要被忽略。为了解决这些问题,我们提出了一种多互动关注网络(Mian),全面提取各种细粒度特征之间的潜在关系(例如,性别,年龄和用户档案)。具体而言,MIAN包含多交互式层(MIL),其集成了三个本地交互模块,通过顺序行为捕获用户偏好的多个表示,并同时利用细粒度的用户特定的以及上下文信息。此外,我们设计了一个全局交互模块(GIM)来学习高阶交互,平衡多个功能的不同影响。最后,脱机实验结果来自三个数据集,以及在大型推荐系统中的在线A / B测试,展示了我们提出的方法的有效性。
translated by 谷歌翻译
在本文中,我们试图通过引入深度学习模型的句法归纳偏见来建立两所学校之间的联系。我们提出了两个归纳偏见的家族,一个家庭用于选区结构,另一个用于依赖性结构。选区归纳偏见鼓励深度学习模型使用不同的单位(或神经元)分别处理长期和短期信息。这种分离为深度学习模型提供了一种方法,可以从顺序输入中构建潜在的层次表示形式,即更高级别的表示由高级表示形式组成,并且可以分解为一系列低级表示。例如,在不了解地面实际结构的情况下,我们提出的模型学会通过根据其句法结构组成变量和运算符的表示来处理逻辑表达。另一方面,依赖归纳偏置鼓励模型在输入序列中找到实体之间的潜在关系。对于自然语言,潜在关系通常被建模为一个定向依赖图,其中一个单词恰好具有一个父节点和零或几个孩子的节点。将此约束应用于类似变压器的模型之后,我们发现该模型能够诱导接近人类专家注释的有向图,并且在不同任务上也优于标准变压器模型。我们认为,这些实验结果为深度学习模型的未来发展展示了一个有趣的选择。
translated by 谷歌翻译
用户嵌入(用户的矢量化表示)对于推荐系统至关重要。已经提出了许多方法来为用户构建代表性,以找到用于检索任务的类似项目,并且已被证明在工业推荐系统中也有效。最近,人们发现使用多个嵌入式代表用户的能力,希望每个嵌入代表用户对某个主题的兴趣。通过多息表示,重要的是要对用户对不同主题的喜好进行建模以及偏好如何随时间变化。但是,现有方法要么无法估算用户对每个利息的亲和力,要么不合理地假设每个用户的每一个利息随时间而逐渐消失,从而损害了候选人检索的召回。在本文中,我们提出了多功能偏好(MIP)模型,这种方法不仅可以通过更有效地使用用户的顺序参与来为用户产生多种利益因此,可以按比例地从每个利息中检索候选人。在各种工业规模的数据集上进行了广泛的实验,以证明我们方法的有效性。
translated by 谷歌翻译
点击率预测是商业推荐系统中的核心任务之一。它旨在预测用户点击给定用户和项目特征的特定项目的概率。随着特征相互作用引入非线性,它们被广泛采用以提高CTR预测模型的性能。因此,有效的建模特征互动在研究和工业领域引起了很多关注。目前的方法通常可以分为三类:(1)NA \“IVE方法,它不会模拟特征交互,只使用原始特征;(2)记忆方法,通过显式将其视为新功能而记住功能交互。分配可培训嵌入式;(3)分解方法,学习原始特征的潜在矢量和通过分解功能的隐式模型相互作用。研究表明,由于不同特征相互作用的独特特征,这些方法之一的建模特征交互是次优。为了解决这个问题,我们首先提出一个称为OptInter的一般框架,该框架可以找到每个功能交互的最合适的建模方法。可以将不同的最先进的深度CTR模型视为optinter的实例。实现功能Optinter,我们还介绍了一种自动搜索最佳建模方法的学习算法。W e在四个大型数据集中进行广泛的实验。我们的实验表明,Optinter可提高最佳的最先进的基线深度CTR模型,高达2.21%。与回忆的方法相比,这也优于基线,我们减少了高达91%的参数。此外,我们进行了几项消融研究,以研究Optinter不同组分的影响。最后,我们提供关于替代替代品结果的可解释讨论。
translated by 谷歌翻译