Model based reinforcement learning (MBRL) uses an imperfect model of the world to imagine trajectories of future states and plan the best actions that maximize a given reward. These trajectories are imperfect and MBRL attempts to overcome this by relying on model predictive control (MPC) to continuously re-imagine trajectories from scratch. Such re-generation of imagined trajectories carries the major computational cost and increasing complexity in tasks with longer receding horizon. We investigate how far in the future the imagined trajectories can be relied upon while still maintaining acceptable reward. After taking each action, information becomes available about its immediate effect and its impact on outcomes expected of future actions. Hereby, we propose four methods for deciding whether to trust and act upon imagined trajectories: i) looking at recent errors with respect to expectations, ii) comparing the confidence in an action imagined against its execution, iii) observing the deviation in projected future states iv) observing the deviation in projected future rewards. An experiment analyzing the effects of acting upon imagination shows that our methods reduce computation by at least 20\% and up to 80\%, depending on the environment, while retaining acceptable reward.
translated by 谷歌翻译
安全已成为对现实世界系统应用深度加固学习的主要挑战之一。目前,诸如人类监督等外部知识的纳入唯一可以防止代理人访问灾难性状态的手段。在本文中,我们提出了一种基于安全模型的强化学习的新框架MBHI,可确保状态级安全,可以有效地避免“本地”和“非本地”灾难。监督学习者的合并在MBHI培训,以模仿人类阻止决策。类似于人类决策过程,MBHI将在执行对环境的动作之前在动态模型中推出一个想象的轨迹,并估算其安全性。当想象力遇到灾难时,MBHI将阻止当前的动作并使用高效的MPC方法来输出安全策略。我们在几个安全任务中评估了我们的方法,结果表明,与基线相比,MBHI在样品效率和灾难数方面取得了更好的性能。
translated by 谷歌翻译
Model-based reinforcement learning (RL) algorithms can attain excellent sample efficiency, but often lag behind the best model-free algorithms in terms of asymptotic performance. This is especially true with high-capacity parametric function approximators, such as deep networks. In this paper, we study how to bridge this gap, by employing uncertainty-aware dynamics models. We propose a new algorithm called probabilistic ensembles with trajectory sampling (PETS) that combines uncertainty-aware deep network dynamics models with sampling-based uncertainty propagation. Our comparison to state-of-the-art model-based and model-free deep RL algorithms shows that our approach matches the asymptotic performance of model-free algorithms on several challenging benchmark tasks, while requiring significantly fewer samples (e.g., 8 and 125 times fewer samples than Soft Actor Critic and Proximal Policy Optimization respectively on the half-cheetah task).
translated by 谷歌翻译
Behavioural cloning (BC) is a commonly used imitation learning method to infer a sequential decision-making policy from expert demonstrations. However, when the quality of the data is not optimal, the resulting behavioural policy also performs sub-optimally once deployed. Recently, there has been a surge in offline reinforcement learning methods that hold the promise to extract high-quality policies from sub-optimal historical data. A common approach is to perform regularisation during training, encouraging updates during policy evaluation and/or policy improvement to stay close to the underlying data. In this work, we investigate whether an offline approach to improving the quality of the existing data can lead to improved behavioural policies without any changes in the BC algorithm. The proposed data improvement approach - Trajectory Stitching (TS) - generates new trajectories (sequences of states and actions) by `stitching' pairs of states that were disconnected in the original data and generating their connecting new action. By construction, these new transitions are guaranteed to be highly plausible according to probabilistic models of the environment, and to improve a state-value function. We demonstrate that the iterative process of replacing old trajectories with new ones incrementally improves the underlying behavioural policy. Extensive experimental results show that significant performance gains can be achieved using TS over BC policies extracted from the original data. Furthermore, using the D4RL benchmarking suite, we demonstrate that state-of-the-art results are obtained by combining TS with two existing offline learning methodologies reliant on BC, model-based offline planning (MBOP) and policy constraint (TD3+BC).
translated by 谷歌翻译
在训练数据的分布中评估时,学到的模型和政策可以有效地概括,但可以在分布输入输入的情况下产生不可预测且错误的输出。为了避免在部署基于学习的控制算法时分配变化,我们寻求一种机制将代理商限制为类似于受过训练的国家和行动的机制。在控制理论中,Lyapunov稳定性和控制不变的集合使我们能够保证稳定系统周围系统的控制器,而在机器学习中,密度模型使我们能够估算培训数据分布。我们可以将这两个概念结合起来,产生基于学习的控制算法,这些算法仅使用分配动作将系统限制为分布状态?在这项工作中,我们建议通过结合Lyapunov稳定性和密度估计的概念来做到这一点,引入Lyapunov密度模型:控制Lyapunov函数和密度模型的概括,这些函数和密度模型可以保证代理商在其整个轨迹上保持分布的能力。
translated by 谷歌翻译
在RL的许多实际应用中,观察来自环境的状态过渡是昂贵的。例如,在核聚变的等离子体控制问题中,计算给定的状态对对的下一个状态需要查询昂贵的过渡功能,这可以导致许多小时的计算机模拟或美元科学研究。这种昂贵的数据收集禁止应用标准RL算法,该算法通常需要大量观察来学习。在这项工作中,我们解决了有效地学习策略的问题,同时为转换函数进行最小数量的状态动作查询。特别是,我们利用贝叶斯最优实验设计的想法,以指导选择国家行动查询以获得高效学习。我们提出了一种采集功能,该函数量化了状态动作对将提供多少信息对Markov决策过程提供的最佳解决方案。在每次迭代时,我们的算法最大限度地提高了该采集功能,选择要查询的最具信息性的状态动作对,从而产生数据有效的RL方法。我们试验各种模拟的连续控制问题,并显示我们的方法学习最佳政策,最高$ 5 $ - $ 1,000 \倍的数据,而不是基于模型的RL基线,10 ^ 3美元 - $ 10 ^ 5 \ times比无模型RL基线更少的数据。我们还提供了几种消融比较,这指出了从获得数据的原理方法产生的大量改进。
translated by 谷歌翻译
尽管学习环境内部模型的强化学习(RL)方法具有比没有模型的对应物更有效的样本效率,但学会从高维传感器中建模原始观察结果可能具有挑战性。先前的工作通过通过辅助目标(例如重建或价值预测)学习观察值的低维表示来解决这一挑战。但是,这些辅助目标与RL目标之间的一致性通常不清楚。在这项工作中,我们提出了一个单一的目标,该目标共同优化了潜在空间模型和政策,以实现高回报,同时保持自洽。这个目标是预期收益的下限。与基于模型的RL在策略探索或模型保证方面的先前范围不同,我们的界限直接依靠整体RL目标。我们证明,所得算法匹配或改善了最佳基于模型和无模型的RL方法的样品效率。尽管这种有效的样品方法通常在计算上是要求的,但我们的方法在较小的壁式锁定时间降低了50 \%。
translated by 谷歌翻译
本文探讨了强化学习(RL)模型用于自动赛车的使用。与安全车是头等大事的乘用车相反,赛车的目的是最大程度地减少单圈时间。我们将问题视为一项强化学习任务,其中包括由车辆遥测组成的多维输入和连续的动作空间。为了找出哪种RL方法更好地解决了问题,以及获得的模型是否推广到未知轨道上,我们将10种深层确定性策略梯度(DDPG)变体进行了两个实验:i)〜研究RL方法如何学习驱动驱动赛车和ii)研究学习方案如何影响模型的推广能力。我们的研究表明,接受RL训练的模型不仅能够比基线开源手工机器人更快地驾驶,而且还可以推广到未知轨道。
translated by 谷歌翻译
在这项工作中,我们提出并评估了一种新的增强学习方法,紧凑体验重放(编者),它使用基于相似转换集的复发的预测目标值的时间差异学习,以及基于两个转换的经验重放的新方法记忆。我们的目标是减少在长期累计累计奖励的经纪人培训所需的经验。它与强化学习的相关性与少量观察结果有关,即它需要实现类似于文献中的相关方法获得的结果,这通常需要数百万视频框架来培训ATARI 2600游戏。我们举报了在八个挑战街机学习环境(ALE)挑战游戏中,为仅10万帧的培训试验和大约25,000次迭代的培训试验中报告了培训试验。我们还在与基线的同一游戏中具有相同的实验协议的DQN代理呈现结果。为了验证从较少数量的观察结果近似于良好的政策,我们还将其结果与从啤酒的基准上呈现的数百万帧中获得的结果进行比较。
translated by 谷歌翻译
在过去的十年中,强化学习成功地解决了复杂的控制任务和决策问题,例如Go棋盘游戏。然而,在将这些算法部署到现实世界情景方面的成功案例很少。原因之一是在处理和避免不安全状态时缺乏保证,这是关键控制工程系统的基本要求。在本文中,我们介绍了指导性的安全射击(GUS),这是一种基于模型的RL方法,可以学会以最小的侵犯安全限制来控制系统。该模型以迭代批次方式在系统操作过程中收集的数据中学习,然后用于计划在每个时间步骤执行的最佳动作。我们提出了三个不同的安全计划者,一个基于简单的随机拍摄策略,两个基于MAP-ELITE,一种更高级的发散搜索算法。实验表明,这些计划者可以帮助学习代理避免在最大程度地探索状态空间的同时避免不安全的情况,这是学习系统准确模型的必要方面。此外,与无模型方法相比,学习模型可以减少与现实系统的交互作用的数量,同时仍达到高奖励,这是处理工程系统时的基本要求。
translated by 谷歌翻译
强化学习(RL)通过与环境相互作用的试验过程解决顺序决策问题。尽管RL在玩复杂的视频游戏方面取得了巨大的成功,但在现实世界中,犯错误总是不希望的。为了提高样本效率并从而降低错误,据信基于模型的增强学习(MBRL)是一个有前途的方向,它建立了环境模型,在该模型中可以进行反复试验,而无需实际成本。在这项调查中,我们对MBRL进行了审查,重点是Deep RL的最新进展。对于非壮观环境,学到的环境模型与真实环境之间始终存在概括性错误。因此,非常重要的是分析环境模型中的政策培训与实际环境中的差异,这反过来又指导了更好的模型学习,模型使用和政策培训的算法设计。此外,我们还讨论了其他形式的RL,包括离线RL,目标条件RL,多代理RL和Meta-RL的最新进展。此外,我们讨论了MBRL在现实世界任务中的适用性和优势。最后,我们通过讨论MBRL未来发展的前景来结束这项调查。我们认为,MBRL在被忽略的现实应用程序中具有巨大的潜力和优势,我们希望这项调查能够吸引更多关于MBRL的研究。
translated by 谷歌翻译
本文为基于MPC的基于MPC模型的增强学习方法的计划模块提出了一个新的评分功能,以解决使用奖励功能得分轨迹的固有偏见。所提出的方法使用折现价值和折扣价值提高了现有基于MPC的MBRL方法的学习效率。该方法利用最佳轨迹来指导策略学习,并根据现实世界更新其状态行动价值函数,并增强板载数据。在选定的Mujoco健身环境中评估了所提出方法的学习效率,以及在学习的模拟机器人模型中学习运动技能。结果表明,所提出的方法在学习效率和平均奖励回报方面优于当前的最新算法。
translated by 谷歌翻译
在过去的十年中,多智能经纪人强化学习(Marl)已经有了重大进展,但仍存在许多挑战,例如高样本复杂性和慢趋同稳定的政策,在广泛的部署之前需要克服,这是可能的。然而,在实践中,许多现实世界的环境已经部署了用于生成策略的次优或启发式方法。一个有趣的问题是如何最好地使用这些方法作为顾问,以帮助改善多代理领域的加强学习。在本文中,我们提供了一个原则的框架,用于将动作建议纳入多代理设置中的在线次优顾问。我们描述了在非传记通用随机游戏环境中提供多种智能强化代理(海军上将)的问题,并提出了两种新的基于Q学习的算法:海军上将决策(海军DM)和海军上将 - 顾问评估(Admiral-AE) ,这使我们能够通过适当地纳入顾问(Admiral-DM)的建议来改善学习,并评估顾问(Admiral-AE)的有效性。我们从理论上分析了算法,并在一般加上随机游戏中提供了关于他们学习的定点保证。此外,广泛的实验说明了这些算法:可以在各种环境中使用,具有对其他相关基线的有利相比的性能,可以扩展到大状态行动空间,并且对来自顾问的不良建议具有稳健性。
translated by 谷歌翻译
Learned world models summarize an agent's experience to facilitate learning complex behaviors. While learning world models from high-dimensional sensory inputs is becoming feasible through deep learning, there are many potential ways for deriving behaviors from them. We present Dreamer, a reinforcement learning agent that solves long-horizon tasks from images purely by latent imagination. We efficiently learn behaviors by propagating analytic gradients of learned state values back through trajectories imagined in the compact state space of a learned world model. On 20 challenging visual control tasks, Dreamer exceeds existing approaches in data-efficiency, computation time, and final performance.
translated by 谷歌翻译
数据驱动的模型预测控制比无模型方法具有两个关键优势:通过模型学习提高样本效率的潜力,并且作为计划增加的计算预算的更好性能。但是,在漫长的视野上进行计划既昂贵又挑战,以获得准确的环境模型。在这项工作中,我们结合了无模型和基于模型的方法的优势。我们在短范围内使用学习的面向任务的潜在动力学模型进行局部轨迹优化,并使用学习的终端值函数来估计长期回报,这两者都是通过时间差异学习共同学习的。我们的TD-MPC方法比在DMCONTROL和META-WORLD的状态和基于图像的连续控制任务上实现了卓越的样本效率和渐近性能。代码和视频结果可在https://nicklashansen.github.io/td-mpc上获得。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
自成立以来,建立在广泛任务中表现出色的普通代理的任务一直是强化学习的重要目标。这个问题一直是对Alarge工作体系的研究的主题,并且经常通过观察Atari 57基准中包含的广泛范围环境的分数来衡量的性能。 Agent57是所有57场比赛中第一个超过人类基准的代理商,但这是以数据效率差的代价,需要实现近800亿帧的经验。以Agent57为起点,我们采用了各种各样的形式,以降低超过人类基线所需的经验200倍。在减少数据制度和Propose有效的解决方案时,我们遇到了一系列不稳定性和瓶颈,以构建更强大,更有效的代理。我们还使用诸如Muesli和Muzero之类的高性能方法证明了竞争性的性能。 TOOUR方法的四个关键组成部分是(1)近似信任区域方法,该方法可以从TheOnline网络中稳定引导,(2)损失和优先级的归一化方案,在学习具有广泛量表的一组值函数时,可以提高鲁棒性, (3)改进的体系结构采用了NFNET的技术技术来利用更深的网络而无需标准化层,并且(4)政策蒸馏方法可使瞬时贪婪的策略加班。
translated by 谷歌翻译
Offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data. This problem setting offers the promise of utilizing such datasets to acquire policies without any costly or dangerous active exploration. However, it is also challenging, due to the distributional shift between the offline training data and those states visited by the learned policy. Despite significant recent progress, the most successful prior methods are model-free and constrain the policy to the support of data, precluding generalization to unseen states. In this paper, we first observe that an existing model-based RL algorithm already produces significant gains in the offline setting compared to model-free approaches. However, standard model-based RL methods, designed for the online setting, do not provide an explicit mechanism to avoid the offline setting's distributional shift issue. Instead, we propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics. We theoretically show that the algorithm maximizes a lower bound of the policy's return under the true MDP. We also characterize the trade-off between the gain and risk of leaving the support of the batch data. Our algorithm, Model-based Offline Policy Optimization (MOPO), outperforms standard model-based RL algorithms and prior state-of-the-art model-free offline RL algorithms on existing offline RL benchmarks and two challenging continuous control tasks that require generalizing from data collected for a different task. * equal contribution. † equal advising. Orders randomized.34th Conference on Neural Information Processing Systems (NeurIPS 2020),
translated by 谷歌翻译
资产分配(或投资组合管理)是确定如何最佳将有限预算的资金分配给一系列金融工具/资产(例如股票)的任务。这项研究调查了使用无模型的深RL代理应用于投资组合管理的增强学习(RL)的性能。我们培训了几个RL代理商的现实股票价格,以学习如何执行资产分配。我们比较了这些RL剂与某些基线剂的性能。我们还比较了RL代理,以了解哪些类别的代理表现更好。从我们的分析中,RL代理可以执行投资组合管理的任务,因为它们的表现明显优于基线代理(随机分配和均匀分配)。四个RL代理(A2C,SAC,PPO和TRPO)总体上优于最佳基线MPT。这显示了RL代理商发现更有利可图的交易策略的能力。此外,基于价值和基于策略的RL代理之间没有显着的性能差异。演员批评者的表现比其他类型的药物更好。同样,在政策代理商方面的表现要好,因为它们在政策评估方面更好,样品效率在投资组合管理中并不是一个重大问题。这项研究表明,RL代理可以大大改善资产分配,因为它们的表现优于强基础。基于我们的分析,在政策上,参与者批评的RL药物显示出最大的希望。
translated by 谷歌翻译
机器学习算法中多个超参数的最佳设置是发出大多数可用数据的关键。为此目的,已经提出了几种方法,例如进化策略,随机搜索,贝叶斯优化和启发式拇指规则。在钢筋学习(RL)中,学习代理在与其环境交互时收集的数据的信息内容严重依赖于许多超参数的设置。因此,RL算法的用户必须依赖于基于搜索的优化方法,例如网格搜索或Nelder-Mead单简单算法,这对于大多数R1任务来说是非常效率的,显着减慢学习曲线和离开用户的速度有目的地偏见数据收集的负担。在这项工作中,为了使RL算法更加用户独立,提出了一种使用贝叶斯优化的自主超参数设置的新方法。来自过去剧集和不同的超参数值的数据通过执行行为克隆在元学习水平上使用,这有助于提高最大化获取功能的加强学习变体的有效性。此外,通过紧密地整合在加强学习代理设计中的贝叶斯优化,还减少了收敛到给定任务的最佳策略所需的状态转换的数量。与其他手动调整和基于优化的方法相比,计算实验显示了有希望的结果,这突出了改变算法超级参数来增加所生成数据的信息内容的好处。
translated by 谷歌翻译