由于行人涉及的撞车事故的数量增加,行人安全已成为各种研究的重要研究主题。为了主动评估行人安全,替代安全措施(SSM)已被广泛用于基于交通冲突的研究中,因为它们不需要历史崩溃作为输入。但是,大多数现有的SSM是根据道路使用者保持恒定速度和方向的假设而开发的。基于此假设的风险估计较不稳定,更可能被夸大,并且无法捕获驾驶员的回避操作。考虑到现有SSM之间的局限性,本研究提出了一个概率框架,用于估计十字路口处行人车的风险。提出的框架通过使用高斯过程回归预测轨迹,并通过随机森林模型来解释不同可能的驱动器操纵,从而放大了恒定速度的限制。在十字路口收集的现实世界激光雷达数据用于评估所提出的框架的性能。新开发的框架能够识别所有行人车的冲突。与收集时间相比,提议的框架提供了更稳定的风险估计,并捕获了汽车的回避操作。此外,提议的框架不需要昂贵的计算资源,这使其成为交叉点实时主动行人安全解决方案的理想选择。
translated by 谷歌翻译
近年来,道路安全引起了智能运输系统领域的研究人员和从业者的重大关注。作为最常见的道路用户群体之一,行人由于其不可预测的行为和运动而导致令人震惊,因为车辆行人互动的微妙误解可以很容易地导致风险的情况或碰撞。现有方法使用预定义的基于碰撞的模型或人类标签方法来估计行人的风险。这些方法通常受到他们的概括能力差,缺乏对自我车辆和行人之间的相互作用的限制。这项工作通过提出行人风险级预测系统来解决所列问题。该系统由三个模块组成。首先,收集车辆角度的行人数据。由于数据包含关于自我车辆和行人的运动的信息,因此可以简化以交互感知方式预测时空特征的预测。使用长短短期存储器模型,行人轨迹预测模块预测后续五个框架中的时空特征。随着预测的轨迹遵循某些交互和风险模式,采用混合聚类和分类方法来探讨时空特征中的风险模式,并使用学习模式训练风险等级分类器。在预测行人的时空特征并识别相应的风险水平时,确定自我车辆和行人之间的风险模式。实验结果验证了PRLP系统的能力,以预测行人的风险程度,从而支持智能车辆的碰撞风险评估,并为车辆和行人提供安全警告。
translated by 谷歌翻译
通常根据历史崩溃数据来实践道路的风险评估。有时缺少有关驾驶员行为和实时交通情况的信息。在本文中,安全的路线映射(SRM)模型是一种开发道路动态风险热图的方法,可扩展在做出预测时考虑驾驶员行为。 Android应用程序旨在收集驱动程序的信息并将其上传到服务器。在服务器上,面部识别提取了驱动程序的数据,例如面部地标,凝视方向和情绪。检测到驾驶员的嗜睡和分心,并评估驾驶性能。同时,动态的流量信息由路边摄像头捕获并上传到同一服务器。采用基于纵向扫描的动脉交通视频分析来识别视频中的车辆以建立速度和轨迹概况。基于这些数据,引入了LightGBM模型,以预测接下来一两秒钟的驾驶员的冲突指数。然后,使用模糊逻辑模型合并了多个数据源,包括历史崩溃计数和预测的交通冲突指标,以计算道路细分的风险评分。使用从实际的交通交叉点和驾驶模拟平台收集的数据来说明所提出的SRM模型。预测结果表明该模型是准确的,并且增加的驱动程序行为功能将改善模型的性能。最后,为可视化目的而生成风险热图。当局可以使用动态热图来指定安全的走廊,并调度执法部门以及驱动程序,以预警和行程计划。
translated by 谷歌翻译
本文为可以提取车辆间交互的自治车辆提供特定于自主车辆的驾驶员风险识别框架。在驾驶员认知方式下对城市驾驶场景进行了这种提取,以提高风险场景的识别准确性。首先,将群集分析应用于驱动程序的操作数据,以学习不同驱动程序风险场景的主观评估,并为每个场景生成相应的风险标签。其次,采用图形表示模型(GRM)统一和构建动态车辆,车间交互和静态交通标记的实际驾驶场景中的特征。驾驶员特定的风险标签提供了实践,以捕获不同司机的风险评估标准。此外,图形模型表示驾驶场景的多个功能。因此,所提出的框架可以了解不同驱动程序的驾驶场景的风险评估模式,并建立特定于驱动程序的风险标识符。最后,通过使用由多个驱动程序收集的现实世界城市驾驶数据集进行的实验评估所提出的框架的性能。结果表明,建议的框架可以准确地识别实际驾驶环境中的风险及其水平。
translated by 谷歌翻译
在公共道路上大规模的自动车辆部署有可能大大改变当今社会的运输方式。尽管这种追求是在几十年前开始的,但仍有公开挑战可靠地确保此类车辆在开放环境中安全运行。尽管功能安全性是一个完善的概念,但测量车辆行为安全的问题仍然需要研究。客观和计算分析交通冲突的一种方法是开发和利用所谓的关键指标。在与自动驾驶有关的各种应用中,当代方法利用了关键指标的潜力,例如用于评估动态风险或过滤大型数据集以构建方案目录。作为系统地选择适当的批判性指标的先决条件,我们在自动驾驶的背景下广泛回顾了批判性指标,其属性及其应用的现状。基于这篇综述,我们提出了一种适合性分析,作为一种有条不紊的工具,可以由从业者使用。然后,可以利用提出的方法和最新审查的状态来选择涵盖应用程序要求的合理的测量工具,如分析的示例性执行所证明。最终,高效,有效且可靠的衡量自动化车辆安全性能是证明其可信赖性的关键要求。
translated by 谷歌翻译
自动检测交通事故是交通监控系统中重要的新兴主题。如今,许多城市交叉路口都配备了与交通管理系统相关的监视摄像机。因此,计算机视觉技术可以是自动事故检测的可行工具。本文提出了一个新的高效框架,用于在交通监视应用的交叉点上进行事故检测。所提出的框架由三个层次步骤组成,包括基于最先进的Yolov4方法的有效和准确的对象检测,基于Kalman滤波器与匈牙利算法进行关联的对象跟踪以及通过轨迹冲突分析进行的事故检测。对象关联应用了新的成本函数,以适应对象跟踪步骤中的遮挡,重叠对象和形状变化。为了检测不同类型的轨迹冲突,包括车辆到车辆,车辆对乘车和车辆对自行车,对物体轨迹进行了分析。使用真实交通视频数据的实验结果显示,该方法在交通监视的实时应用中的可行性。尤其是,轨迹冲突,包括在城市十字路口发生的近乎事故和事故,以低的错误警报率和高检测率检测到。使用从YouTube收集的具有不同照明条件的视频序列评估所提出框架的鲁棒性。该数据集可在以下网址公开获取:http://github.com/hadi-ghnd/accidentdetection。
translated by 谷歌翻译
“轨迹”是指由地理空间中的移动物体产生的迹线,通常由一系列按时间顺序排列的点表示,其中每个点由地理空间坐标集和时间戳组成。位置感应和无线通信技术的快速进步使我们能够收集和存储大量的轨迹数据。因此,许多研究人员使用轨迹数据来分析各种移动物体的移动性。在本文中,我们专注于“城市车辆轨迹”,这是指城市交通网络中车辆的轨迹,我们专注于“城市车辆轨迹分析”。城市车辆轨迹分析提供了前所未有的机会,可以了解城市交通网络中的车辆运动模式,包括以用户为中心的旅行经验和系统范围的时空模式。城市车辆轨迹数据的时空特征在结构上相互关联,因此,许多先前的研究人员使用了各种方法来理解这种结构。特别是,由于其强大的函数近似和特征表示能力,深度学习模型是由于许多研究人员的注意。因此,本文的目的是开发基于深度学习的城市车辆轨迹分析模型,以更好地了解城市交通网络的移动模式。特别是,本文重点介绍了两项研究主题,具有很高的必要性,重要性和适用性:下一个位置预测,以及合成轨迹生成。在这项研究中,我们向城市车辆轨迹分析提供了各种新型模型,使用深度学习。
translated by 谷歌翻译
计算机视觉在智能运输系统(ITS)和交通监视中发挥了重要作用。除了快速增长的自动化车辆和拥挤的城市外,通过实施深层神经网络的实施,可以使用视频监视基础架构进行自动和高级交通管理系统(ATM)。在这项研究中,我们为实时交通监控提供了一个实用的平台,包括3D车辆/行人检测,速度检测,轨迹估算,拥塞检测以及监视车辆和行人的相互作用,都使用单个CCTV交通摄像头。我们适应了定制的Yolov5深神经网络模型,用于车辆/行人检测和增强的排序跟踪算法。还开发了基于混合卫星的基于混合卫星的逆透视图(SG-IPM)方法,用于摄像机自动校准,从而导致准确的3D对象检测和可视化。我们还根据短期和长期的时间视频数据流开发了层次结构的交通建模解决方案,以了解脆弱道路使用者的交通流量,瓶颈和危险景点。关于现实世界情景和与最先进的比较的几项实验是使用各种交通监控数据集进行的,包括从高速公路,交叉路口和城市地区收集的MIO-TCD,UA-DETRAC和GRAM-RTM,在不同的照明和城市地区天气状况。
translated by 谷歌翻译
Vehicle-to-Everything (V2X) communication has been proposed as a potential solution to improve the robustness and safety of autonomous vehicles by improving coordination and removing the barrier of non-line-of-sight sensing. Cooperative Vehicle Safety (CVS) applications are tightly dependent on the reliability of the underneath data system, which can suffer from loss of information due to the inherent issues of their different components, such as sensors failures or the poor performance of V2X technologies under dense communication channel load. Particularly, information loss affects the target classification module and, subsequently, the safety application performance. To enable reliable and robust CVS systems that mitigate the effect of information loss, we proposed a Context-Aware Target Classification (CA-TC) module coupled with a hybrid learning-based predictive modeling technique for CVS systems. The CA-TC consists of two modules: A Context-Aware Map (CAM), and a Hybrid Gaussian Process (HGP) prediction system. Consequently, the vehicle safety applications use the information from the CA-TC, making them more robust and reliable. The CAM leverages vehicles path history, road geometry, tracking, and prediction; and the HGP is utilized to provide accurate vehicles' trajectory predictions to compensate for data loss (due to communication congestion) or sensor measurements' inaccuracies. Based on offline real-world data, we learn a finite bank of driver models that represent the joint dynamics of the vehicle and the drivers' behavior. We combine offline training and online model updates with on-the-fly forecasting to account for new possible driver behaviors. Finally, our framework is validated using simulation and realistic driving scenarios to confirm its potential in enhancing the robustness and reliability of CVS systems.
translated by 谷歌翻译
由于精确定位传感器,人工智能(AI)的安全功能,自动驾驶系统,连接的车辆,高通量计算和边缘计算服务器的技术进步,驾驶安全分析最近经历了前所未有的改进。特别是,深度学习(DL)方法授权音量视频处理,从路边单元(RSU)捕获的大型视频中提取与安全相关的功能。安全指标是调查崩溃和几乎冲突事件的常用措施。但是,这些指标提供了对整个网络级流量管理的有限见解。另一方面,一些安全评估工作致力于处理崩溃报告,并确定与道路几何形状,交通量和天气状况相关的崩溃的空间和时间模式。这种方法仅依靠崩溃报告,而忽略了交通视频的丰富信息,这些信息可以帮助确定违规行为在崩溃中的作用。为了弥合这两个观点,我们定义了一组新的网络级安全指标(NSM),以通过处理RSU摄像机拍摄的图像来评估交通流的总体安全性。我们的分析表明,NSM显示出与崩溃率的显着统计关联。这种方法与简单地概括单个崩溃分析的结果不同,因为所有车辆都有助于计算NSM,而不仅仅是碰撞事件所涉及的NSM。该视角将交通流量视为一个复杂的动态系统,其中某些节点的动作可以通过网络传播并影响其他节点的崩溃风险。我们还提供了附录A中的代孕安全指标(SSM)的全面审查。
translated by 谷歌翻译
This paper describes Waymo's Collision Avoidance Testing (CAT) methodology: a scenario-based testing method that evaluates the safety of the Waymo Driver Automated Driving Systems' (ADS) intended functionality in conflict situations initiated by other road users that require urgent evasive maneuvers. Because SAE Level 4 ADS are responsible for the dynamic driving task (DDT), when engaged, without immediate human intervention, evaluating a Level 4 ADS using scenario-based testing is difficult due to the potentially infinite number of operational scenarios in which hazardous situations may unfold. To that end, in this paper we first describe the safety test objectives for the CAT methodology, including the collision and serious injury metrics and the reference behavior model representing a non-impaired eyes on conflict human driver used to form an acceptance criterion. Afterward, we introduce the process for identifying potentially hazardous situations from a combination of human data, ADS testing data, and expert knowledge about the product design and associated Operational Design Domain (ODD). The test allocation and execution strategy is presented next, which exclusively utilize simulations constructed from sensor data collected on a test track, real-world driving, or from simulated sensor data. The paper concludes with the presentation of results from applying CAT to the fully autonomous ride-hailing service that Waymo operates in San Francisco, California and Phoenix, Arizona. The iterative nature of scenario identification, combined with over ten years of experience of on-road testing, results in a scenario database that converges to a representative set of responder role scenarios for a given ODD. Using Waymo's virtual test platform, which is calibrated to data collected as part of many years of ADS development, the CAT methodology provides a robust and scalable safety evaluation.
translated by 谷歌翻译
流量交叉点的机芯特定车辆分类和计数是各种交通管理活动的重要组成部分。在这种情况下,在最近基于计算机视觉的技术方面的进步,相机已经成为从交通场景中提取车辆轨迹的可靠数据源。然而,随着这种方式的运动轨迹的特性根据相机校准而变化,对这些轨迹进行分类非常具有挑战性。虽然一些现有方法已经解决了具有体面准确性的此类分类任务,但这些方法的性能显着依赖于手动规范的几个感兴趣区域。在这项研究中,我们提出了一种自动分类方法,用于移动基于Vision的车辆轨迹的特定分类(例如右转,左转和通过运动)。我们的分类框架使用此后,采用基于同性的分配策略来指定在交通场景中观察到的不同运动模式,以将传入的车辆轨迹分配给识别的移动组。旨在克服基于视觉轨迹的固有缺点的新的相似度措施。实验结果表明,拟议的分类方法的有效性及其适应不同交通方案的能力,无需任何手动干预。
translated by 谷歌翻译
无罪化的交叉路口驾驶对自动车辆有挑战性。为了安全有效的性能,应考虑相互作用的车辆的多样化和动态行为。基于游戏理论框架,提出了一种用于无罪交叉口的自动决策的人类收益设计方法。展望理论被引入将客观碰撞风险映射到主观驾驶员收益,并且驾驶风格可以量化为安全和速度之间的权衡。为了考虑相互作用的动态,进一步引入了概率模型来描述司机的加速趋势。仿真结果表明,该决策算法可以描述极限情况下双车交互的动态过程。统一采样案例模拟的统计数据表明,安全互动的成功率达到98%,而且还可以保证速度效率。在四臂交叉路口的四车辆交互情景中进一步应用并验证了所提出的方法。
translated by 谷歌翻译
Recently, e-scooter-involved crashes have increased significantly but little information is available about the behaviors of on-road e-scooter riders. Most existing e-scooter crash research was based on retrospectively descriptive media reports, emergency room patient records, and crash reports. This paper presents a naturalistic driving study with a focus on e-scooter and vehicle encounters. The goal is to quantitatively measure the behaviors of e-scooter riders in different encounters to help facilitate crash scenario modeling, baseline behavior modeling, and the potential future development of in-vehicle mitigation algorithms. The data was collected using an instrumented vehicle and an e-scooter rider wearable system, respectively. A three-step data analysis process is developed. First, semi-automatic data labeling extracts e-scooter rider images and non-rider human images in similar environments to train an e-scooter-rider classifier. Then, a multi-step scene reconstruction pipeline generates vehicle and e-scooter trajectories in all encounters. The final step is to model e-scooter rider behaviors and e-scooter-vehicle encounter scenarios. A total of 500 vehicle to e-scooter interactions are analyzed. The variables pertaining to the same are also discussed in this paper.
translated by 谷歌翻译
自动驾驶汽车使用各种传感器和机器学习型号来预测周围道路使用者的行为。文献中的大多数机器学习模型都集中在定量误差指标上,例如均方根误差(RMSE),以学习和报告其模型的功能。对定量误差指标的关注倾向于忽略模型的更重要的行为方面,从而提出了这些模型是否真正预测类似人类行为的问题。因此,我们建议分析机器学习模型的输出,就像我们将在常规行为研究中分析人类数据一样。我们介绍定量指标,以证明在自然主义高速公路驾驶数据集中存在三种不同的行为现象:1)运动学依赖性谁通过合并点首次通过合并点2)巷道上的车道更改,可容纳坡道车辆3 )车辆通过高速公路上的车辆变化,以避免铅车冲突。然后,我们使用相同的指标分析了三个机器学习模型的行为。即使模型的RMSE值有所不同,所有模型都捕获了运动学依赖性的合并行为,但在不同程度上挣扎着捕获更细微的典型礼貌车道变更和高速公路车道的变化行为。此外,车道变化期间的碰撞厌恶分析表明,模型努力捕获人类驾驶的物理方面:在车辆之间留下足够的差距。因此,我们的分析强调了简单的定量指标不足,并且在分析人类驾驶预测的机器学习模型时需要更广泛的行为观点。
translated by 谷歌翻译
作为自主驱动系统的核心技术,行人轨迹预测可以显着提高主动车辆安全性的功能,减少道路交通损伤。在交通场景中,当遇到迎面而来的人时,行人可能会立即转动或停止,这通常会导致复杂的轨迹。为了预测这种不可预测的轨迹,我们可以深入了解行人之间的互动。在本文中,我们提出了一种名为Spatial Interaction Transformer(SIT)的新型生成方法,其通过注意机制学习行人轨迹的时空相关性。此外,我们介绍了条件变形Autiachoder(CVAE)框架来模拟未来行人的潜在行动状态。特别是,基于大规模的TRAFC数据集NUSCENES [2]的实验显示,坐下的性能优于最先进的(SOTA)方法。对挑战性的Eth和UCY数据集的实验评估概述了我们提出的模型的稳健性
translated by 谷歌翻译
在本文中,我们使用人造风险领域的概念来预测人类操作员如何控制车辆以应对即将到来的道路情况。风险领域将非负风险措施分配给系统状态,以模拟该状态与违反安全财产的距离,例如击中障碍或离开道路。使用风险字段,我们构建了操作员的随机模型,该模型从状态映射到可能的行动。我们在驾驶任务上展示了我们的方法,其中要求人类受试者在逼真的驾驶模拟器中驾驶汽车,同时避免在道路上遇到障碍。我们表明,通过解决凸优化问题,可以获得驾驶数据最有可能的风险字段。接下来,我们将推断的风险领域应用于产生不同的驾驶行为,同时将预测的轨迹与地面真相测量进行比较。我们观察到,风险场在预测未来的轨迹分布方面非常出色,预测精度高达二十秒预测范围。同时,我们观察到一些挑战,例如无法说明驾驶员如何根据道路条件选择加速/减速。
translated by 谷歌翻译
连接和自动化的车辆安全性度量通过分析涉及SV和其他动态道路用户和环境特征之间的交互的数据来确定主题车辆(SV)的性能。当数据集仅包含从自然主义的混合交通驾驶环境中收集的有限样本时,预计公制将通过在预期域预期的域中指定在哪个域中来概括观察到的有限样本到未观察的病例的安全评估结果在该领域中,SV在统计上是安全的。然而,据我们所知,任何现有的安全指标都不能够用特定的运营领域,保证完整,证明无偏见的安全评估结果证明上述属性证明上述属性。在本文中,我们提出了一种涉及$ \ alpha $ -shape和$ \ epsilon $ - 最强大的前进不变集的新型安全指标,以表征SV几乎安全的可操作域以及SV留在安全内部的概率域分别无限期。通过覆盖各种保真度(现实世界和模拟器),驾驶环境(公路,城市和交叉路口),道路使用者(汽车,卡车和行人)和SV驾驶行为(人员驾驶员和自动驾驶算法)。
translated by 谷歌翻译
在人群情景中,根据许多外部因素,预测行人的轨迹是一个复杂和具有挑战性的任务。场景的拓扑和行人之间的相互作用只是其中一些。由于数据 - 科学和数据收集技术的进步,深入学习方法最近成为众多域中的研究热点。因此,越来越多的研究人员对预测行人的轨迹应用这些方法并不令人惊讶。本文将这些相对较新的深度学习算法与基于经典知识的模型进行了比较,这些算法被广泛用于模拟行人动态。它为两种方法提供了全面的文献综述,探索了技术和应用面向差异,并解决了未来的问题以及未来的发展方向。我们的调查指出,由于深度学习算法的高准确性,现在,基于知识的模型来预测局部轨迹的内容是可疑的。然而,深度学习算法用于大规模模拟的能力和集体动态的描述仍有待证明。此外,比较表明,两种方法(混合方法)的组合似乎很有希望克服像深度学习方法的缺失解释性等缺点。
translated by 谷歌翻译
交叉路口是自动驾驶任务最具挑战性的场景之一。由于复杂性和随机性,在相交处的基本应用(例如行为建模,运动预测,安全验证等)在很大程度上取决于数据驱动的技术。因此,交叉点中对流量参与者(TPS)的轨迹数据集的需求很大。目前,城市地区的大多数交叉路口都配备了交通信号灯。但是,尚无用于信号交叉点的大规模,高质量,公开可用的轨迹数据集。因此,在本文中,在中国天津选择了典型的两相信号交叉点。此外,管道旨在构建信号交叉数据集(SIND),其中包含7个小时的记录,其中包括13,000多种TPS,具有7种类型。然后,记录了信德的交通违规行为。此外,也将信德与其他类似作品进行比较。 SIND的特征可以概括如下:1)信德提供了更全面的信息,包括交通信号灯状态,运动参数,高清(HD)地图等。2)TPS的类别是多种多样和特征的,其中比例是脆弱的道路使用者(VRU)最高为62.6%3)显示了多次交通信号灯违反非电动车辆的行为。我们认为,Sind将是对现有数据集的有效补充,可以促进有关自动驾驶的相关研究。该数据集可通过以下方式在线获得:https://github.com/sotif-avlab/sind
translated by 谷歌翻译