在本文中,提出了一个新的数据驱动模型来关闭和提高rans方程的准确性。 Reynolds应力张量(RST)的差异是通过神经网络(NN)获得的,该神经网络(NN)的体系结构和输入选择可以保证Galilean和坐标框架旋转。前者源自NN的输入选择,而后者是从RST的差异扩展为向量的。该方法已被广泛用于针对各向异性RST或RST差异的数据驱动模型,在这里提出了首先差异。因此,提出了第一个与平均数量的差异的构成关系以获得这种扩展。此外,一旦训练了提出的数据驱动方法,就无需运行任何经典的湍流模型来关闭方程。与标准的湍流模型相比,使用正方形管和周期性丘陵的流量测试来显示本方法的优势。
translated by 谷歌翻译
本构模型广泛用于在科学与工程中建模复杂系统,其中基于第一原则,解决良好的模拟通常是非常昂贵的。例如,在流体动力学中,需要构成型型号来描述非局部,未解决的物理学,例如湍流和层状湍流转变。然而,基于部分微分方程(PDE)的传统本构模型通常缺乏稳健性,并且太硬而无法容纳不同的校准数据集。我们提出了一种基于可以使用数据学习的矢量云神经网络的帧无关的非局部构成模型。该模型在基于其邻域中的流量信息的点处预测闭合变量。这种非本种信息由一组点表示,每个点具有附加到它的特征向量,因此输入被称为矢量云。云通过帧无关的神经网络映射到封闭变量,不变于协调转换和旋转以及云中点的排序。这样,网络可以处理任何数量的任意排列的网格点,因此适用于流体模拟中的非结构化网格。所提出的网络的优点是在参数化的周期山几何形状上的标量传输PDE上进行了说明。矢量云神经网络是一个有前途的工具,不仅是非本体构成型模型,而且还是作为不规则结构域的PDE的一般代理模型。
translated by 谷歌翻译
在本文中,我们根据卷积神经网络训练湍流模型。这些学到的湍流模型改善了在模拟时为不可压缩的Navier-Stokes方程的溶解不足的低分辨率解。我们的研究涉及开发可区分的数值求解器,该求解器通过多个求解器步骤支持优化梯度的传播。这些属性的重要性是通过那些模型的出色稳定性和准确性来证明的,这些模型在训练过程中展开了更多求解器步骤。此外,我们基于湍流物理学引入损失项,以进一步提高模型的准确性。这种方法应用于三个二维的湍流场景,一种均匀的腐烂湍流案例,一个暂时进化的混合层和空间不断发展的混合层。与无模型模拟相比,我们的模型在长期A-posterii统计数据方面取得了重大改进,而无需将这些统计数据直接包含在学习目标中。在推论时,我们提出的方法还获得了相似准确的纯粹数值方法的实质性改进。
translated by 谷歌翻译
Surrogate models are necessary to optimize meaningful quantities in physical dynamics as their recursive numerical resolutions are often prohibitively expensive. It is mainly the case for fluid dynamics and the resolution of Navier-Stokes equations. However, despite the fast-growing field of data-driven models for physical systems, reference datasets representing real-world phenomena are lacking. In this work, we develop AirfRANS, a dataset for studying the two-dimensional incompressible steady-state Reynolds-Averaged Navier-Stokes equations over airfoils at a subsonic regime and for different angles of attacks. We also introduce metrics on the stress forces at the surface of geometries and visualization of boundary layers to assess the capabilities of models to accurately predict the meaningful information of the problem. Finally, we propose deep learning baselines on four machine learning tasks to study AirfRANS under different constraints for generalization considerations: big and scarce data regime, Reynolds number, and angle of attack extrapolation.
translated by 谷歌翻译
We develop a wall model for large-eddy simulation (LES) that takes into account various pressure-gradient effects using multi-agent reinforcement learning (MARL). The model is trained using low-Reynolds-number flow over periodic hills with agents distributed on the wall along the computational grid points. The model utilizes a wall eddy-viscosity formulation as the boundary condition, which is shown to provide better predictions of the mean velocity field, rather than the typical wall-shear stress formulation. Each agent receives states based on local instantaneous flow quantities at an off-wall location, computes a reward based on the estimated wall-shear stress, and provides an action to update the wall eddy viscosity at each time step. The trained wall model is validated in wall-modeled LES (WMLES) of flow over periodic hills at higher Reynolds numbers, and the results show the effectiveness of the model on flow with pressure gradients. The analysis of the trained model indicates that the model is capable of distinguishing between the various pressure gradient regimes present in the flow.
translated by 谷歌翻译
我们提出了一个机器学习框架,该框架将图像超分辨率技术与级别测量方法中的被动标量传输融为一体。在这里,我们研究是否可以计算直接数据驱动的校正,以最大程度地减少界面的粗晶石演化中的数值粘度。拟议的系统的起点是半拉格朗日配方。并且,为了减少数值耗散,我们引入了一个易于识别的多层感知器。该神经网络的作用是改善数值估计的表面轨迹。为此,它在单个时间范围内处理局部级别集,速度和位置数据,以便在移动前部附近的选择顶点。因此,我们的主要贡献是一种新型的机器学习调音算法,该算法与选择性重新融为一体并与常规对流交替运行,以保持调整后的界面轨迹平滑。因此,我们的程序比基于全卷卷积的应用更有效,因为它仅在自由边界周围集中计算工作。同样,我们通过各种测试表明,我们的策略有效地抵消了数值扩散和质量损失。例如,在简单的对流问题中,我们的方法可以达到与基线方案相同的精度,分辨率是分辨率的两倍,但成本的一小部分。同样,我们的杂种技术可以产生可行的固化前端,以进行结晶过程。另一方面,切向剪切流和高度变形的模拟会导致偏置伪像和推理恶化。同样,严格的设计速度约束可以将我们的求解器的应用限制为涉及快速接口更改的问题。在后一种情况下,我们已经确定了几个机会来增强鲁棒性,而没有放弃我们的方法的基本概念。
translated by 谷歌翻译
部分微分方程(PDE)在许多复杂动态过程的数学建模中发挥着主导作用。解决这些PDE通常需要预定的计算成本,特别是当必须对不同的参数或条件进行多次评估时。在培训之后,神经运营商可以比传统的PDE溶剂更快地提供PDES解决方案。在这项工作中,检查两个神经运营商的不变性属性和计算复杂性,用于标量数量的运输PDE。基于图形内核网络(GKN)的神经运算符在图形结构数据上运行,以合并非识别依赖性。在这里,我们提出了改进的GKN制定以实现帧不变性。传染媒介云神经网络(VCNN)是一个具有嵌入式帧不变性的替代神经运算符,可在点云数据上运行。基于GKN的神经运营商与VCNN相比,略微更好地预测性能。然而,GKN需要过度高的计算成本,与VCNN的线性增加相比,随着越来越多的离散物对象而直角增加。
translated by 谷歌翻译
通过Navier-Stokes方程的数值解决方案的计算流体动力学(CFD)仿真是从工程设计到气候建模的广泛应用中的重要工具。然而,CFD代码所需的计算成本和内存需求对于实际兴趣的流动可能变得非常高,例如在空气动力学形状优化中。该费用与流体流动控制方程的复杂性有关,其包括具有困难的解决方案的非线性部分衍生术语,导致长的计算时间和限制在迭代设计过程中可以测试的假设的数量。因此,我们提出了DeepCFD:基于卷积神经网络(CNN)的模型,其有效地近似于均匀稳态流动问题的解决方案。所提出的模型能够直接从使用最先进的CFD代码生成的地面真实数据的速度和压力场的完整解决方案的完整解决方案。使用DeepCFD,与标准CFD方法以低误差率的成本相比,我们发现高达3个数量级的加速。
translated by 谷歌翻译
我们培训了深度神经网络(DNN)作为中微子能量密度,助熔剂和流体速度的函数,以再现在我们的第一原理核心崩溃超新星(CCSN)模拟中获得的Eddington Tensor。虽然是中微子运输的最流行近似的矩的方法需要闭合关系,但文献中通常采用的分析闭合关系都没有捕获动量空间中的中微子角分布的所有方面。在本文中,我们通过使用将中微子能量密度,磁通量和流体速度作为输入和埃丁顿张量作为输出来开发闭合关系。我们考虑两种DNN:传统的DNN命名为组分 - 明智的神经网络(CWNN)和张力基神经网络(TBNN)。我们发现,埃丁顿张量的对角线组件由DNN比M1封闭关系更好地再现,特别是对于低到中间能量。对于非对角线组件,DNN与Boltzmann求解器更好地达到比大半径的M1闭合更好。在两个DNN之间的比较中,TBNN具有比CWNN稍微更好的性能。通过基于DNN的新的封闭关系,该DNN良好地重现Eddington Tensor的成本更小,我们为瞬间方法开辟了一种新的可能性。
translated by 谷歌翻译
在过去的几年中,有监督的学习(SL)已确立了自己的最新数据驱动湍流建模。在SL范式中,基于数据集对模型进行了训练,该数据集通常通过应用相应的滤波器函数来从高保真解决方案中计算出先验的模型,该函数将已分离的和未分辨的流量尺度分开。对于隐式过滤的大涡模拟(LES),此方法是不可行的,因为在这里,使用的离散化本身是隐式滤波器函数。因此,通常不知道确切的滤波器形式,因此,即使有完整的解决方案可用,也无法计算相应的闭合项。强化学习(RL)范式可用于避免通过先前获得的培训数据集训练,而是通过直接与动态LES环境本身进行交互来避免这种不一致。这允许通过设计将潜在复杂的隐式LES过滤器纳入训练过程中。在这项工作中,我们应用了一个增强学习框架,以找到最佳的涡流粘度,以隐式过滤强制均匀的各向同性湍流的大型涡流模拟。为此,我们将基于卷积神经网络的策略网络制定湍流建模的任务作为RL任务,该杂志神经网络仅基于局部流量状态在时空中动态地适应LES中的涡流效率。我们证明,受过训练的模型可以提供长期稳定的模拟,并且在准确性方面,它们的表现优于建立的分析模型。此外,这些模型可以很好地推广到其他决议和离散化。因此,我们证明RL可以为一致,准确和稳定的湍流建模提供一个框架,尤其是对于隐式过滤的LE。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
Machine learning-based modeling of physical systems has experienced increased interest in recent years. Despite some impressive progress, there is still a lack of benchmarks for Scientific ML that are easy to use but still challenging and representative of a wide range of problems. We introduce PDEBench, a benchmark suite of time-dependent simulation tasks based on Partial Differential Equations (PDEs). PDEBench comprises both code and data to benchmark the performance of novel machine learning models against both classical numerical simulations and machine learning baselines. Our proposed set of benchmark problems contribute the following unique features: (1) A much wider range of PDEs compared to existing benchmarks, ranging from relatively common examples to more realistic and difficult problems; (2) much larger ready-to-use datasets compared to prior work, comprising multiple simulation runs across a larger number of initial and boundary conditions and PDE parameters; (3) more extensible source codes with user-friendly APIs for data generation and baseline results with popular machine learning models (FNO, U-Net, PINN, Gradient-Based Inverse Method). PDEBench allows researchers to extend the benchmark freely for their own purposes using a standardized API and to compare the performance of new models to existing baseline methods. We also propose new evaluation metrics with the aim to provide a more holistic understanding of learning methods in the context of Scientific ML. With those metrics we identify tasks which are challenging for recent ML methods and propose these tasks as future challenges for the community. The code is available at https://github.com/pdebench/PDEBench.
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
映射近场污染物的浓度对于跟踪城市地区意外有毒羽状分散体至关重要。通过求解大部分湍流谱,大型模拟(LES)具有准确表示污染物浓度空间变异性的潜力。找到一种合成大量信息的方法,以提高低保真操作模型的准确性(例如,提供更好的湍流封闭条款)特别有吸引力。这是一个挑战,在多质量环境中,LES的部署成本高昂,以了解羽流和示踪剂分散如何随着各种大气和源参数的变化。为了克服这个问题,我们提出了一个合并正交分解(POD)和高斯过程回归(GPR)的非侵入性降低阶模型,以预测与示踪剂浓度相关的LES现场统计。通过最大的后验(MAP)过程,GPR HyperParameter是通过POD告知的最大后验(MAP)过程来优化组件的。我们在二维案例研究上提供了详细的分析,该案例研究对应于表面安装的障碍物上的湍流大气边界层流。我们表明,障碍物上游的近源浓度异质性需要大量的POD模式才能得到充分捕获。我们还表明,逐组分的优化允许捕获POD模式中的空间尺度范围,尤其是高阶模式中较短的浓度模式。如果学习数据库由至少五十至100个LES快照制成,则可以首先估算所需的预算,以朝着更逼真的大气分散应用程序迈进,因此减少订单模型的预测仍然可以接受。
translated by 谷歌翻译
\ emph {几何深度学习}(GDL)的最新进展显示了其提供强大数据驱动模型的潜力。这提供了探索从图形数据中\ emph {部分微分方程}(PDES)控制的物理系统的新方法的动力。然而,尽管做出了努力和最近的成就,但几个研究方向仍未开发,进步仍然远非满足现实现象的身体要求。主要障碍之一是缺乏基准数据集和常见的物理评估协议。在本文中,我们提出了一个2-D Graph-Mesh数据集,以研究High Reynolds制度的机翼上的气流(从$ 10^6 $及以后)。我们还对翼型上的应力力引入指标,以评估重要的物理量的GDL模型。此外,我们提供广泛的GDL基准。
translated by 谷歌翻译
机器人社区在为软机器人设备建模提供的理论工具的复杂程度中看到了指数增长。已经提出了不同的解决方案以克服与软机器人建模相关的困难,通常利用其他科学学科,例如连续式机械和计算机图形。这些理论基础通常被认为是理所当然的,这导致复杂的文献,因此,从未得到完整审查的主题。Withing这种情况下,提交的文件的目标是双重的。突出显示涉及建模技术的不同系列的常见理论根源,采用统一语言,以简化其主要连接和差异的分析。因此,对上市接近自然如下,并最终提供在该领域的主要作品的完整,解开,审查。
translated by 谷歌翻译
泊松方程至关重要,以获得用于霍尔效应推进器和炉射线放电的等离子体流体模拟中的自我一致的解决方案,因为泊松解决方案看起来是不稳定的非线性流动方程的源期。作为第一步,使用多尺度架构研究了使用深神经网络的零小小的边界条件的求解2D泊松方程,以分支机构,深度和接收领域的数量定义。一个关键目标是更好地了解神经网络如何学习泊松解决方案,并提供指导方针来实现最佳网络配置,特别是当耦合到具有等离子体源术语的时变欧拉方程时。这里,发现接收领域对于正确捕获场的大拓扑结构至关重要。对多种架构,损失和封锁的调查提供了最佳的网络来准确解决稳定的泊松问题。然后在具有越来越多的节点的网格上监测称为Plasmanet的最佳神经网络求解器的性能,并与经典平行的线性溶剂进行比较。接下来,在电子等离子体振荡测试盒的上下文中,Plasmanet与不稳定的欧拉等离子体流体方程求解器联接。在这一时间不断发展的问题中,需要物理损失来产生稳定的模拟。最终测试了涉及化学和平流的更复杂的放电繁殖案例。应用了先前部分中建立的指导方针,以构建CNN,以解决具有不同边界条件的圆柱形坐标中的相同泊松方程。结果揭示了良好的CNN预测,并利用现代GPU的硬件铺平了新的计算策略,以预测涉及泊松方程的不稳定问题。
translated by 谷歌翻译
最近,与神经网络的时间相关微分方程的解决方案最近引起了很多关注。核心思想是学习控制解决方案从数据演变的法律,该数据可能会被随机噪声污染。但是,与其他机器学习应用相比,通常对手头的系统了解很多。例如,对于许多动态系统,诸如能量或(角度)动量之类的物理量是完全保守的。因此,神经网络必须从数据中学习这些保护定律,并且仅由于有限的训练时间和随机噪声而被满足。在本文中,我们提出了一种替代方法,该方法使用Noether的定理将保护定律本质地纳入神经网络的体系结构。我们证明,这可以更好地预测三个模型系统:在三维牛顿引力潜能中非偏见粒子的运动,Schwarzschild指标中庞大的相对论粒子的运动和两个相互作用的粒子在四个相互作用的粒子系统中的运动方面。
translated by 谷歌翻译