图表神经网络(GNN)最近被出现为用于将深网络架构应用于图形和关系数据的车辆。然而,考虑到较大的工业数据集的大小,在许多实际情况下,通过GNN层共享信息所需的消息不再可扩展。虽然已经引入了各种采样方法以在贸易预算范围内接近全图培训,但仍然存在未解决的并发症,如高差异和有限的理论保证。为了解决这些问题,我们建立在现有的工作并将GNN邻居采样视为多武装的强盗问题,但是具有新设计的奖励功能,介绍了一定程度的偏差,旨在减少方差,避免不稳定,可能无界的支付。与之前的强盗 - GNN用例不同,所产生的政策导致接近最佳的遗憾,同时占SGD引入的GNN培训动态。从实际的角度来看,这转化为较低的差异估计和竞争或卓越的测试准确性,跨几个基准。
translated by 谷歌翻译
图表卷积网络(GCNS)在各种半监督节点分类任务中取得了令人印象深刻的实证进步。尽管取得了巨大的成功,但在大型图形上培训GCNS遭受了计算和内存问题。规避这些障碍的潜在路径是基于采样的方法,其中在每个层处采样节点的子集。虽然最近的研究已经证明了基于采样的方法的有效性,但这些作品缺乏在现实环境下的理论融合担保,并且不能完全利用优化期间演出参数的信息。在本文中,我们描述并分析了一般的双差异减少模式,可以在内存预算下加速任何采样方法。所提出的模式的激励推动是仔细分析采样方法的差异,其中示出了诱导方差可以在前进传播期间分解为节点嵌入近似方差(Zeroth阶差异)(第一 - 顺序变化)在后向传播期间。理论上,从理论上分析所提出的架构的融合,并显示它享有$ \ Mathcal {O}(1 / T)$收敛率。我们通过将建议的模式集成在不同的采样方法中并将其应用于不同的大型实际图形来补充我们的理论结果。
translated by 谷歌翻译
我们考虑随机多武装强盗(MAB)问题,延迟影响了行动。在我们的环境中,过去采取的行动在随后的未来影响了ARM奖励。在现实世界中,行动的这种延迟影响是普遍的。例如,为某个社会群体中的人员偿还贷款的能力可能历史上历史上批准贷款申请的频率频率。如果银行将贷款申请拒绝拒绝弱势群体,则可以创建反馈循环,进一步损害该群体中获取贷款的机会。在本文中,我们制定了在多武装匪徒的背景下的行动延迟和长期影响。由于在学习期间,我们将强盗设置概括为对这种“偏置”的依赖性进行编码。目标是随着时间的推移最大化收集的公用事业,同时考虑到历史行动延迟影响所产生的动态。我们提出了一种算法,实现了$ \ tilde {\ mathcal {o}}的遗憾,并显示$ \ omega(kt ^ {2/3})$的匹配遗憾下限,其中$ k $是武器数量,$ t $是学习地平线。我们的结果通过添加技术来补充强盗文献,以处理具有长期影响的行动,并对设计公平算法有影响。
translated by 谷歌翻译
通过新兴应用程序,如现场媒体电子商务,促销和建议,我们介绍和解决了一般的非静止多武装强盗问题,具有以下两个特征:(i)决策者可以拉动和收集每次期间,从最多$ k \,(\ ge 1)美元的奖励; (ii)手臂拉动后的预期奖励立即下降,然后随着ARM空闲时间的增加,非参数恢复。目的是最大化预期累计奖励超过$ T $时间段,我们设计了一类“纯粹的周期性政策”,共同设置了拉动每个臂的时间。对于拟议的政策,我们证明了离线问题和在线问题的性能保证。对于脱机问题,当已知所有型号参数时,所提出的周期性策略获得1- \ Mathcal O(1 / \ Sqrt {k})$的近似率,当$ k $生长时是渐近的最佳状态到无穷远。对于在线问题时,当模型参数未知并且需要动态学习时,我们将脱机周期性策略与在线策略上的上部置信程序进行集成。拟议的在线策略被证明是对脱机基准的近似拥有$ \ widetilde {\ mathcal o}(n \ sqrt {t})。我们的框架和政策设计可能在更广泛的离线规划和在线学习应用程序中阐明,具有非静止和恢复奖励。
translated by 谷歌翻译
我们考虑一个多武装的强盗设置,在每一轮的开始时,学习者接收嘈杂的独立,并且可能偏见,\ emph {评估}每个臂的真正奖励,它选择$ k $武器的目标累积尽可能多的奖励超过$ $ rounds。在假设每轮在每个臂的真正奖励从固定分发中汲取的,我们得出了不同的算法方法和理论保证,具体取决于评估的生成方式。首先,在观察功能是真正奖励的遗传化线性函数时,我们在一般情况下展示$ \ widetilde {o}(t ^ {2/3})$后悔。另一方面,当观察功能是真正奖励的嘈杂线性函数时,我们就可以派生改进的$ \ widetilde {o}(\ sqrt {t})$后悔。最后,我们报告了一个实证验证,确认我们的理论发现,与替代方法进行了彻底的比较,并进一步支持在实践中实现这一环境的兴趣。
translated by 谷歌翻译
在古典语境匪徒问题中,在每轮$ t $,学习者观察一些上下文$ c $,选择一些动作$ i $执行,并收到一些奖励$ r_ {i,t}(c)$。我们考虑此问题的变体除了接收奖励$ r_ {i,t}(c)$之外,学习者还要学习其他一些上下文$的$ r_ {i,t}(c')$的值C'$ in设置$ \ mathcal {o} _i(c)$;即,通过在不同的上下文下执行该行动来实现的奖励\ mathcal {o} _i(c)$。这种变体出现在若干战略设置中,例如学习如何在非真实的重复拍卖中出价,最热衷于随着许多平台转换为运行的第一价格拍卖。我们将此问题称为交叉学习的上下文匪徒问题。古典上下围匪徒问题的最佳算法达到$ \ tilde {o}(\ sqrt {ckt})$遗憾针对所有固定策略,其中$ c $是上下文的数量,$ k $的行动数量和$ $次数。我们设计并分析了交叉学习的上下文匪徒问题的新算法,并表明他们的遗憾更好地依赖上下文的数量。在选择动作时学习所有上下文的奖励的完整交叉学习下,即设置$ \ mathcal {o} _i(c)$包含所有上下文,我们显示我们的算法实现后悔$ \ tilde {o}( \ sqrt {kt})$,删除$ c $的依赖。对于任何其他情况,即在部分交叉学习下,$ | \ mathcal {o} _i(c)| <c $ for $(i,c)$,遗憾界限取决于如何设置$ \ mathcal o_i(c)$影响上下文之间的交叉学习的程度。我们从Ad Exchange运行一流拍卖的广告交换中模拟了我们的真实拍卖数据的算法,并表明了它们优于传统的上下文强盗算法。
translated by 谷歌翻译
我们研究了一个顺序决策问题,其中学习者面临$ k $武装的随机匪徒任务的顺序。对手可能会设计任务,但是对手受到限制,以在$ m $ and的较小(但未知)子集中选择每个任务的最佳组。任务边界可能是已知的(强盗元学习设置)或未知(非平稳的强盗设置)。我们设计了一种基于Burnit subsodular最大化的减少的算法,并表明,在大量任务和少数最佳武器的制度中,它在两种情况下的遗憾都比$ \ tilde {o}的简单基线要小。 \ sqrt {knt})$可以通过使用为非平稳匪徒问题设计的标准算法获得。对于固定任务长度$ \ tau $的强盗元学习问题,我们证明该算法的遗憾被限制为$ \ tilde {o}(nm \ sqrt {m \ tau}+n^{2/3} m \ tau)$。在每个任务中最佳武器的可识别性的其他假设下,我们显示了一个带有改进的$ \ tilde {o}(n \ sqrt {m \ tau}+n^{1/2} {1/2} \ sqrt的强盗元学习算法{m k \ tau})$遗憾。
translated by 谷歌翻译
我们在嵌套政策类别的存在下研究匪徒场景中的模型选择问题,目的是获得同时的对抗和随机性(“两全其美”)高概率的遗憾保证。我们的方法要求每个基础学习者都有一个候选人的遗憾约束,可能会或可能不会举行,而我们的元算法按照一定时间表来扮演每个基础学习者,该时间表使基础学习者的候选人后悔的界限保持平衡,直到被发现违反他们的保证为止。我们开发了专门设计的仔细的错误指定测试,以将上述模型选择标准与利用环境的(潜在良性)性质的能力相结合。我们在对抗环境中恢复畜栏算法的模型选择保证,但是在实现高概率后悔界限的附加益处,特别是在嵌套对抗性线性斑块的情况下。更重要的是,我们的模型选择结果也同时在差距假设​​下的随机环境中同时保持。这些是在(线性)匪徒场景中执行模型选择时,可以达到世界上最好的(随机和对抗性)保证的第一个理论结果。
translated by 谷歌翻译
我们在非稳定性或时间变化偏好下,在$ k $的武器{动态遗憾最小化}中研究了\ mpph {动态遗憾最小化}。这是一个在线学习设置,其中代理在每个轮中选择一对项目,并仅观察该对的相对二进制`的次数“反馈,从该圆的底层偏好矩阵中采样。我们首先研究对抗性偏好序列的静态后悔最小化问题,并使用$ O(\ SQRT {kt})为高概率遗憾设计了高效的算法。我们接下来使用类似的算法思想,提出一种在非实践中的两种概念下的动态遗为最小化的高效且可透明的最佳算法。特别是,我们建立$ \ to(\ sqrt {skt})$和$ \ to({v_t ^ {1/3} k ^ {1/3} t ^ {2/3}})$动态后悔保证,$ S $是基础偏好关系中的“有效交换机”的总数,以及$ V_T $的衡量标准的“连续变化”非公平性。尽管现实世界系统中的非静止环境实用性,但在这项工作之前尚未研究这些问题的复杂性。我们通过证明在上述非实践概念下的符合下限保证匹配的匹配的算法来证明我们的算法的最优性。最后,我们通过广泛的模拟来证实我们的结果,并比较我们算法在最先进的基线上的功效。
translated by 谷歌翻译
我们在这里采用贝叶斯非参数混合模型,以将多臂匪徒扩展到尤其是汤普森采样,以扩展到存在奖励模型不确定性的场景。在随机的多臂强盗中,播放臂的奖励是由未知分布产生的。奖励不确定性,即缺乏有关奖励生成分布的知识,引起了探索 - 开发权的权衡:强盗代理需要同时了解奖励分布的属性,并顺序决定下一步要采取哪种操作。在这项工作中,我们通过采用贝叶斯非参数高斯混合模型来进行奖励模型不确定性,将汤普森的抽样扩展到场景中,以进行灵活的奖励密度估计。提出的贝叶斯非参数混合物模型汤普森采样依次学习了奖励模型,该模型最能近似于真实但未知的每臂奖励分布,从而实现了成功的遗憾表现。我们基于基于后验分析的新颖的分析得出的,这是一种针对该方法的渐近遗憾。此外,我们从经验上评估了其在多样化和以前难以捉摸的匪徒环境中的性能,例如,在指数级的家族中,奖励不受异常值和不同的每臂奖励分布。我们表明,拟议的贝叶斯非参数汤普森取样优于表现,无论是平均累积的遗憾和遗憾的波动,最先进的替代方案。在存在强盗奖励模型不确定性的情况下,提出的方法很有价值,因为它避免了严格的逐案模型设计选择,但提供了重要的遗憾。
translated by 谷歌翻译
This paper is in the field of stochastic Multi-Armed Bandits (MABs), i.e., those sequential selection techniques able to learn online using only the feedback given by the chosen option (a.k.a. arm). We study a particular case of the rested and restless bandits in which the arms' expected payoff is monotonically non-decreasing. This characteristic allows designing specifically crafted algorithms that exploit the regularity of the payoffs to provide tight regret bounds. We design an algorithm for the rested case (R-ed-UCB) and one for the restless case (R-less-UCB), providing a regret bound depending on the properties of the instance and, under certain circumstances, of $\widetilde{\mathcal{O}}(T^{\frac{2}{3}})$. We empirically compare our algorithms with state-of-the-art methods for non-stationary MABs over several synthetically generated tasks and an online model selection problem for a real-world dataset. Finally, using synthetic and real-world data, we illustrate the effectiveness of the proposed approaches compared with state-of-the-art algorithms for the non-stationary bandits.
translated by 谷歌翻译
我们考虑非平稳马尔可夫决策过程中的无模型增强学习(RL)。只要其累积变化不超过某些变化预算,奖励功能和国家过渡功能都可以随时间随时间变化。我们提出了重新启动的Q学习,以上置信度范围(RestartQ-UCB),这是第一个用于非平稳RL的无模型算法,并表明它在动态遗憾方面优于现有的解决方案。具体而言,带有freedman型奖励项的restartq-ucb实现了$ \ widetilde {o}(s^{\ frac {1} {3}} {\ frac {\ frac {1} {1} {3}} {3}} {3}} {3}} {3}} {3}} {3}} {3}} {\ delta ^{\ frac {1} {3}} h t^{\ frac {2} {3}}} $,其中$ s $和$ a $分别是$ \ delta> 0 $的状态和动作的数字是变化预算,$ h $是每集的时间步数,而$ t $是时间步长的总数。我们进一步提出了一种名为Double-Restart Q-UCB的无参数算法,该算法不需要事先了解变化预算。我们证明我们的算法是\ emph {几乎是最佳},通过建立$ \ omega的信息理论下限(s^{\ frac {1} {1} {3}}} a^{\ frac {1} {1} {3}}}}}} \ delta^{\ frac {1} {3}} h^{\ frac {2} {3}}}} t^{\ frac {2} {3}}} $,是非稳态RL中的第一个下下限。数值实验可以根据累积奖励和计算效率来验证RISTARTQ-UCB的优势。我们在相关产品的多代理RL和库存控制的示例中证明了我们的结果的力量。
translated by 谷歌翻译
我们在无限地平线马尔可夫决策过程中考虑批量(离线)策略学习问题。通过移动健康应用程序的推动,我们专注于学习最大化长期平均奖励的政策。我们为平均奖励提出了一款双重强大估算器,并表明它实现了半导体效率。此外,我们开发了一种优化算法来计算参数化随机策略类中的最佳策略。估计政策的履行是通过政策阶级的最佳平均奖励与估计政策的平均奖励之间的差异来衡量,我们建立了有限样本的遗憾保证。通过模拟研究和促进体育活动的移动健康研究的分析来说明该方法的性能。
translated by 谷歌翻译
我们将一般的多军匪徒问题视为一个相关(和简单的上下文和不安)元素,是一个放松的控制问题。通过引入熵正则化,我们获得了对值函数的平滑渐近近似。这产生了最佳决策过程的新型半指数近似。该半指数可以被解释为明确平衡探索 - 探索 - 探索权衡取舍,就像乐观的(UCB)原则中,学习溢价明确描述了环境中可用的信息的不对称性和奖励功能中的非线性。所得的渐近随机对照(ARC)算法的性能与其他相关的多臂匪徒的方法相比有利。
translated by 谷歌翻译
Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print or online or to submit the papers to another publication.
translated by 谷歌翻译
富达匪徒问题是$ k $的武器问题的变体,其中每个臂的奖励通过提供额外收益的富达奖励来增强,这取决于播放器如何对该臂进行“忠诚”在过去。我们提出了两种忠诚的模型。在忠诚点模型中,额外奖励的数量取决于手臂之前播放的次数。在订阅模型中,额外的奖励取决于手臂的连续绘制的当前数量。我们考虑随机和对抗问题。由于单臂策略在随机问题中并不总是最佳,因此对抗性环境中遗憾的概念需要仔细调整。我们介绍了三个可能的遗憾和调查,这可以是偏执的偏执。我们详细介绍了增加,减少和优惠券的特殊情况(玩家在手臂的每辆M $播放后获得额外的奖励)保真奖励。对于不一定享受载体遗憾的模型,我们提供了最糟糕的下限。对于那些展示Sublinear遗憾的模型,我们提供算法并绑定他们的遗憾。
translated by 谷歌翻译
最近,提出了经典多军强盗的多代理变体来解决在线学习中的公平问题。受社会选择和经济学方面的长期工作的启发,目标是优化NASH的社会福利,而不是全面的效用。不幸的是,就回合$ t $的数量而言,以前的算法要么不是有效的,要么实现次级遗憾。我们提出了一种新的有效算法,其遗憾也比以前效率低下的算法要低。对于$ n $ agents,$ k $ ands和$ t $ rounds,我们的方法遗憾的是$ \ tilde {o}(\ sqrt {nkt} + nk)$。这是对先前方法的改进,后者对$ \ tilde {o}(\ min(nk,\ sqrt {n} k^{3/2})\ sqrt {t})$的遗憾。我们还使用$ \ tilde {o}(\ sqrt {kt} + n^2k)$遗憾的方法来补充有效算法。实验发现证实了与先前方法相比,我们有效算法的有效性。
translated by 谷歌翻译
Maillard(2013)的博士论文呈现了$ k $武装匪徒问题的随机算法。我们呼叫Maillard采样(MS)的这种缺少已知的算法计算以封闭形式选择每个臂的概率,这对于从强盗数据的反事实评估有用,而是缺乏来自汤普森采样,这是一种广泛采用的匪徒行业算法。通过这种优点,我们重新审视MS并进行改进的分析,以表明它实现了渐近最优性和$ \ SQRT {kt \ log {k}} $ minimax后悔绑定在$ t $是时间界限,它与之匹配标准渐近最佳的UCB的性能。然后,我们提出了一个称为MS $ ^ + $的MS的变体,这将改善其最小绑定到$ \ sqrt {kt \ log {k}} $,而不会失去渐近最优值。 $ ^ + $ MS也可以调整为攻击性(即,较少的探索),而不会失去理论担保,从现有强盗算法无法使用的独特功能。我们的数值评估显示了MS $ ^ + $的有效性。
translated by 谷歌翻译
在多武装强盗框架中,有两种配方通常用于处理时变奖励分布:对抗性强盗和非间抗匪徒。虽然它们的oracelles,算法和后悔分析显着差异,但我们在本文中提供了统一的制定,这是平滑地桥接两种特殊情况。该配方使用Oracle在时间窗口内采用最佳固定臂。根据窗口大小,它在非间断匪盗中的对策强盗和动态oracle中进入Oracle。我们提供符合匹配的下限实现最佳遗憾的算法。
translated by 谷歌翻译
Despite the significant interest and progress in reinforcement learning (RL) problems with adversarial corruption, current works are either confined to the linear setting or lead to an undesired $\tilde{O}(\sqrt{T}\zeta)$ regret bound, where $T$ is the number of rounds and $\zeta$ is the total amount of corruption. In this paper, we consider the contextual bandit with general function approximation and propose a computationally efficient algorithm to achieve a regret of $\tilde{O}(\sqrt{T}+\zeta)$. The proposed algorithm relies on the recently developed uncertainty-weighted least-squares regression from linear contextual bandit \citep{he2022nearly} and a new weighted estimator of uncertainty for the general function class. In contrast to the existing analysis that heavily relies on the linear structure, we develop a novel technique to control the sum of weighted uncertainty, thus establishing the final regret bounds. We then generalize our algorithm to the episodic MDP setting and first achieve an additive dependence on the corruption level $\zeta$ in the scenario of general function approximation. Notably, our algorithms achieve regret bounds either nearly match the performance lower bound or improve the existing methods for all the corruption levels and in both known and unknown $\zeta$ cases.
translated by 谷歌翻译