社会对社交媒体的依赖不断增长,用户为新闻和信息产生的内容增强了不可靠的资源和虚假内容的影响,这使公众讨论并减少了对媒体的信任。验证此类信息的可信度是一项艰巨的任务,容易受到确认偏见的影响,从而开发了算法技术以区分假新闻和真实新闻。但是,大多数现有的方法都具有挑战性的解释,使得难以建立对预测的信任,并在许多现实世界中(例如,视听功能或出处的可用性)做出不现实的假设。在这项工作中,我们专注于使用可解释的功能和方法对文本内容的虚假新闻检测。特别是,我们开发了一个深层的概率模型,该模型使用各种自动编码器和双向长期记忆(LSTM)网络(LSTM)网络与语义主题相关的特征从贝叶斯混合模型推断出来。使用3个现实世界数据集的广泛的实验研究表明,我们的模型可与最先进的竞争模型达到可比的性能,同时促进从学习的主题中解释模型。最后,我们进行了模型消融研究,以证明整合神经嵌入和主题特征的有效性和准确性是通过在较低维嵌入中可分离性评估性能和定性性来定量的。
translated by 谷歌翻译
在本文中,我们提出了STC-GEF,这是一种新型的时空跨平台图嵌入城市交通流量预测的融合方法。我们已经设计了基于图形卷积网络(GCN)的空间嵌入模块,以在交通流数据中提取复杂的空间特征。此外,为了捕获各个时间间隔的交通流数据之间的时间依赖性,我们设计了一个基于复发神经网络的时间嵌入模块。基于观察到不同的运输平台Trip数据(例如出租车,Uber和Lyft)可以关联的观察结果,我们设计了一种有效的融合机制,该机制结合了来自不同运输平台的旅行数据,并进一步将它们用于跨平台交通流量。预测(例如,用于出租车交通流量预测的出租车和乘车共享平台)。我们根据纽约市(NYC)的黄色出租车和乘车共享(LYFT)的现实世界旅行数据进行了广泛的现实实验研究,并验证了STC-GEF在融合不同运输平台中的准确性和有效性数据并预测流量流。
translated by 谷歌翻译
Designing experiments often requires balancing between learning about the true treatment effects and earning from allocating more samples to the superior treatment. While optimal algorithms for the Multi-Armed Bandit Problem (MABP) provide allocation policies that optimally balance learning and earning, they tend to be computationally expensive. The Gittins Index (GI) is a solution to the MABP that can simultaneously attain optimality and computationally efficiency goals, and it has been recently used in experiments with Bernoulli and Gaussian rewards. For the first time, we present a modification of the GI rule that can be used in experiments with exponentially-distributed rewards. We report its performance in simulated 2- armed and 3-armed experiments. Compared to traditional non-adaptive designs, our novel GI modified design shows operating characteristics comparable in learning (e.g. statistical power) but substantially better in earning (e.g. direct benefits). This illustrates the potential that designs using a GI approach to allocate participants have to improve participant benefits, increase efficiencies, and reduce experimental costs in adaptive multi-armed experiments with exponential rewards.
translated by 谷歌翻译
Transformer has achieved impressive successes for various computer vision tasks. However, most of existing studies require to pretrain the Transformer backbone on a large-scale labeled dataset (e.g., ImageNet) for achieving satisfactory performance, which is usually unavailable for medical images. Additionally, due to the gap between medical and natural images, the improvement generated by the ImageNet pretrained weights significantly degrades while transferring the weights to medical image processing tasks. In this paper, we propose Bootstrap Own Latent of Transformer (BOLT), a self-supervised learning approach specifically for medical image classification with the Transformer backbone. Our BOLT consists of two networks, namely online and target branches, for self-supervised representation learning. Concretely, the online network is trained to predict the target network representation of the same patch embedding tokens with a different perturbation. To maximally excavate the impact of Transformer from limited medical data, we propose an auxiliary difficulty ranking task. The Transformer is enforced to identify which branch (i.e., online/target) is processing the more difficult perturbed tokens. Overall, the Transformer endeavours itself to distill the transformation-invariant features from the perturbed tokens to simultaneously achieve difficulty measurement and maintain the consistency of self-supervised representations. The proposed BOLT is evaluated on three medical image processing tasks, i.e., skin lesion classification, knee fatigue fracture grading and diabetic retinopathy grading. The experimental results validate the superiority of our BOLT for medical image classification, compared to ImageNet pretrained weights and state-of-the-art self-supervised learning approaches.
translated by 谷歌翻译
Text clustering and topic extraction are two important tasks in text mining. Usually, these two tasks are performed separately. For topic extraction to facilitate clustering, we can first project texts into a topic space and then perform a clustering algorithm to obtain clusters. To promote topic extraction by clustering, we can first obtain clusters with a clustering algorithm and then extract cluster-specific topics. However, this naive strategy ignores the fact that text clustering and topic extraction are strongly correlated and follow a chicken-and-egg relationship. Performing them separately fails to make them mutually benefit each other to achieve the best overall performance. In this paper, we propose an unsupervised text clustering and topic extraction framework (ClusTop) which integrates text clustering and topic extraction into a unified framework and can achieve high-quality clustering result and extract topics from each cluster simultaneously. Our framework includes four components: enhanced language model training, dimensionality reduction, clustering and topic extraction, where the enhanced language model can be viewed as a bridge between clustering and topic extraction. On one hand, it provides text embeddings with a strong cluster structure which facilitates effective text clustering; on the other hand, it pays high attention on the topic related words for topic extraction because of its self-attention architecture. Moreover, the training of enhanced language model is unsupervised. Experiments on two datasets demonstrate the effectiveness of our framework and provide benchmarks for different model combinations in this framework.
translated by 谷歌翻译
This paper illustrates the technologies of user next intent prediction with a concept knowledge graph. The system has been deployed on the Web at Alipay, serving more than 100 million daily active users. Specifically, we propose AlipayKG to explicitly characterize user intent, which is an offline concept knowledge graph in the Life-Service domain modeling the historical behaviors of users, the rich content interacted by users and the relations between them. We further introduce a Transformer-based model which integrates expert rules from the knowledge graph to infer the online user's next intent. Experimental results demonstrate that the proposed system can effectively enhance the performance of the downstream tasks while retaining explainability.
translated by 谷歌翻译
Capturing feature information effectively is of great importance in vision tasks. With the development of convolutional neural networks (CNNs), concepts like residual connection and multiple scales promote continual performance gains on diverse deep learning vision tasks. However, the existing methods do not organically combined advantages of these valid ideas. In this paper, we propose a novel CNN architecture called GoogLe2Net, it consists of residual feature-reutilization inceptions (ResFRI) or split residual feature-reutilization inceptions (Split-ResFRI) which create transverse passages between adjacent groups of convolutional layers to enable features flow to latter processing branches and possess residual connections to better process information. Our GoogLe2Net is able to reutilize information captured by foregoing groups of convolutional layers and express multi-scale features at a fine-grained level, which improves performances in image classification. And the inception we proposed could be embedded into inception-like networks directly without any migration costs. Moreover, in experiments based on popular vision datasets, such as CIFAR10 (97.94%), CIFAR100 (85.91%) and Tiny Imagenet (70.54%), we obtain better results on image classification task compared with other modern models.
translated by 谷歌翻译
Despite some successful applications of goal-driven navigation, existing deep reinforcement learning-based approaches notoriously suffers from poor data efficiency issue. One of the reasons is that the goal information is decoupled from the perception module and directly introduced as a condition of decision-making, resulting in the goal-irrelevant features of the scene representation playing an adversary role during the learning process. In light of this, we present a novel Goal-guided Transformer-enabled reinforcement learning (GTRL) approach by considering the physical goal states as an input of the scene encoder for guiding the scene representation to couple with the goal information and realizing efficient autonomous navigation. More specifically, we propose a novel variant of the Vision Transformer as the backbone of the perception system, namely Goal-guided Transformer (GoT), and pre-train it with expert priors to boost the data efficiency. Subsequently, a reinforcement learning algorithm is instantiated for the decision-making system, taking the goal-oriented scene representation from the GoT as the input and generating decision commands. As a result, our approach motivates the scene representation to concentrate mainly on goal-relevant features, which substantially enhances the data efficiency of the DRL learning process, leading to superior navigation performance. Both simulation and real-world experimental results manifest the superiority of our approach in terms of data efficiency, performance, robustness, and sim-to-real generalization, compared with other state-of-art baselines. Demonstration videos are available at \colorb{https://youtu.be/93LGlGvaN0c.
translated by 谷歌翻译
Despite the success of large language models (LLMs) in various natural language processing (NLP) tasks, the stored knowledge in these models may inevitably be incomplete, out-of-date, or incorrect. This motivates the need to utilize external knowledge to assist LLMs. Unfortunately, current methods for incorporating external knowledge often require additional training or fine-tuning, which can be costly and may not be feasible for LLMs. To address this issue, we propose a novel post-processing approach, rethinking with retrieval (RR), which retrieves relevant external knowledge based on the decomposed reasoning steps obtained from the chain-of-thought (CoT) prompting. This lightweight approach does not require additional training or fine-tuning and is not limited by the input length of LLMs. We evaluate the effectiveness of RR through extensive experiments with GPT-3 on three complex reasoning tasks: commonsense reasoning, temporal reasoning, and tabular reasoning. Our results show that RR can produce more faithful explanations and improve the performance of LLMs.
translated by 谷歌翻译
Multi-fidelity Kriging model is a promising technique in surrogate-based design as it can balance the model accuracy and cost of sample preparation by fusing low- and high-fidelity data. However, the cost for building a multi-fidelity Kriging model increases significantly with the increase of the problem dimension. To attack this issue, an efficient Hierarchical Kriging modeling method is proposed. In building the low-fidelity model, the maximal information coefficient is utilized to calculate the relative value of the hyperparameter. With this, the maximum likelihood estimation problem for determining the hyperparameters is transformed as a one-dimension optimization problem, which can be solved in an efficient manner and thus improve the modeling efficiency significantly. A local search is involved further to exploit the search space of hyperparameters to improve the model accuracy. The high-fidelity model is built in a similar manner with the hyperparameter of the low-fidelity model served as the relative value of the hyperparameter for high-fidelity model. The performance of the proposed method is compared with the conventional tuning strategy, by testing them over ten analytic problems and an engineering problem of modeling the isentropic efficiency of a compressor rotor. The empirical results demonstrate that the modeling time of the proposed method is reduced significantly without sacrificing the model accuracy. For the modeling of the isentropic efficiency of the compressor rotor, the cost saving associated with the proposed method is about 90% compared with the conventional strategy. Meanwhile, the proposed method achieves higher accuracy.
translated by 谷歌翻译