Despite some successful applications of goal-driven navigation, existing deep reinforcement learning-based approaches notoriously suffers from poor data efficiency issue. One of the reasons is that the goal information is decoupled from the perception module and directly introduced as a condition of decision-making, resulting in the goal-irrelevant features of the scene representation playing an adversary role during the learning process. In light of this, we present a novel Goal-guided Transformer-enabled reinforcement learning (GTRL) approach by considering the physical goal states as an input of the scene encoder for guiding the scene representation to couple with the goal information and realizing efficient autonomous navigation. More specifically, we propose a novel variant of the Vision Transformer as the backbone of the perception system, namely Goal-guided Transformer (GoT), and pre-train it with expert priors to boost the data efficiency. Subsequently, a reinforcement learning algorithm is instantiated for the decision-making system, taking the goal-oriented scene representation from the GoT as the input and generating decision commands. As a result, our approach motivates the scene representation to concentrate mainly on goal-relevant features, which substantially enhances the data efficiency of the DRL learning process, leading to superior navigation performance. Both simulation and real-world experimental results manifest the superiority of our approach in terms of data efficiency, performance, robustness, and sim-to-real generalization, compared with other state-of-art baselines. Demonstration videos are available at \colorb{https://youtu.be/93LGlGvaN0c.
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
深度强化学习在基于激光的碰撞避免有效的情况下取得了巨大的成功,因为激光器可以感觉到准确的深度信息而无需太多冗余数据,这可以在算法从模拟环境迁移到现实世界时保持算法的稳健性。但是,高成本激光设备不仅很难为大型机器人部署,而且还表现出对复杂障碍的鲁棒性,包括不规则的障碍,例如桌子,桌子,椅子和架子,以及复杂的地面和特殊材料。在本文中,我们提出了一个新型的基于单眼相机的复杂障碍避免框架。特别是,我们创新地将捕获的RGB图像转换为伪激光测量,以进行有效的深度强化学习。与在一定高度捕获的传统激光测量相比,仅包含距离附近障碍的一维距离信息,我们提议的伪激光测量融合了捕获的RGB图像的深度和语义信息,这使我们的方法有效地有效障碍。我们还设计了一个功能提取引导模块,以加重输入伪激光测量,并且代理对当前状态具有更合理的关注,这有利于提高障碍避免政策的准确性和效率。
translated by 谷歌翻译
在本文中,我们研究了DRL算法在本地导航问题的应用,其中机器人仅配备有限​​量距离的外部感受传感器(例如LIDAR),在未知和混乱的工作区中朝着目标位置移动。基于DRL的碰撞避免政策具有一些优势,但是一旦他们学习合适的动作的能力仅限于传感器范围,它们就非常容易受到本地最小值的影响。由于大多数机器人在非结构化环境中执行任务,因此寻求能够避免本地最小值的广义本地导航政策,尤其是在未经训练的情况下,这是非常兴趣的。为此,我们提出了一种新颖的奖励功能,该功能结合了在训练阶段获得的地图信息,从而提高了代理商故意最佳行动方案的能力。另外,我们使用SAC算法来训练我们的ANN,这表明在最先进的文献中比其他人更有效。一组SIM到SIM和SIM到现实的实验表明,我们提出的奖励与SAC相结合的表现优于比较局部最小值和避免碰撞的方法。
translated by 谷歌翻译
在狭窄的空间中,基于传统层次自治系统的运动计划可能会导致映射,定位和控制噪声引起碰撞。此外,当无映射时,它将被禁用。为了解决这些问题,我们利用深厚的加强学习,可以证明可以有效地进行自我决策,从而在狭窄的空间中自探索而无需地图,同时避免碰撞。具体而言,基于我们的Ackermann-Steering矩形Zebrat机器人及其凉亭模拟器,我们建议矩形安全区域来表示状态并检测矩形形状的机器人的碰撞,以及无需精心制作的奖励功能,不需要增强功能。目的地信息。然后,我们在模拟的狭窄轨道中基准了五种增强学习算法,包括DDPG,DQN,SAC,PPO和PPO-DISCRETE。经过训练,良好的DDPG和DQN型号可以转移到三个全新的模拟轨道上,然后转移到三个现实世界中。
translated by 谷歌翻译
精确农业正在迅速吸引研究,以有效地引入自动化和机器人解决方案,以支持农业活动。葡萄园和果园中的机器人导航在自主监控方面具有竞争优势,并轻松获取农作物来收集,喷涂和执行时必的耗时必要任务。如今,自主导航算法利用了昂贵的传感器,这也需要大量的数据处理计算成本。尽管如此,葡萄园行代表了一个具有挑战性的户外场景,在这种情况下,GPS和视觉进程技术通常难以提供可靠的定位信息。在这项工作中,我们将Edge AI与深度强化学习相结合,以提出一种尖端的轻质解决方案,以解决自主葡萄园导航的问题,而无需利用精确的本地化数据并通过基于灵活的学习方法来克服任务列出的算法。我们训练端到端的感觉运动剂,该端机直接映射嘈杂的深度图像和位置不可稳定的机器人状态信息到速度命令,并将机器人引导到一排的尽头,不断调整其标题以进行无碰撞的无碰撞中央轨迹。我们在现实的模拟葡萄园中进行的广泛实验证明了解决方案的有效性和代理的概括能力。
translated by 谷歌翻译
我们介绍了一个目标驱动的导航系统,以改善室内场景中的Fapless视觉导航。我们的方法在每次步骤中都将机器人和目标的多视图观察为输入,以提供将机器人移动到目标的一系列动作,而不依赖于运行时在运行时。通过优化包含三个关键设计的组合目标来了解该系统。首先,我们建议代理人在做出行动决定之前构建下一次观察。这是通过从专家演示中学习变分生成模块来实现的。然后,我们提出预测预先预测静态碰撞,作为辅助任务,以改善导航期间的安全性。此外,为了减轻终止动作预测的训练数据不平衡问题,我们还介绍了一个目标检查模块来区分与终止动作的增强导航策略。这三种建议的设计都有助于提高培训数据效率,静态冲突避免和导航泛化性能,从而产生了一种新颖的目标驱动的FLASES导航系统。通过对Turtlebot的实验,我们提供了证据表明我们的模型可以集成到机器人系统中并在现实世界中导航。视频和型号可以在补充材料中找到。
translated by 谷歌翻译
这项工作研究了图像目标导航问题,需要通过真正拥挤的环境引导具有嘈杂传感器和控制的机器人。最近的富有成效的方法依赖于深度加强学习,并学习模拟环境中的导航政策,这些环境比真实环境更简单。直接将这些训练有素的策略转移到真正的环境可能非常具有挑战性甚至危险。我们用由四个解耦模块组成的分层导航方法来解决这个问题。第一模块在机器人导航期间维护障碍物映射。第二个将定期预测实时地图上的长期目标。第三个计划碰撞命令集以导航到长期目标,而最终模块将机器人正确靠近目标图像。四个模块是单独开发的,以适应真实拥挤的情景中的图像目标导航。此外,分层分解对导航目标规划,碰撞避免和导航结束预测的学习进行了解耦,这在导航训练期间减少了搜索空间,并有助于改善以前看不见的真实场景的概括。我们通过移动机器人评估模拟器和现实世界中的方法。结果表明,我们的方法优于多种导航基线,可以在这些方案中成功实现导航任务。
translated by 谷歌翻译
Transformer, originally devised for natural language processing, has also attested significant success in computer vision. Thanks to its super expressive power, researchers are investigating ways to deploy transformers to reinforcement learning (RL) and the transformer-based models have manifested their potential in representative RL benchmarks. In this paper, we collect and dissect recent advances on transforming RL by transformer (transformer-based RL or TRL), in order to explore its development trajectory and future trend. We group existing developments in two categories: architecture enhancement and trajectory optimization, and examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving. For architecture enhancement, these methods consider how to apply the powerful transformer structure to RL problems under the traditional RL framework, which model agents and environments much more precisely than deep RL methods, but they are still limited by the inherent defects of traditional RL algorithms, such as bootstrapping and "deadly triad". For trajectory optimization, these methods treat RL problems as sequence modeling and train a joint state-action model over entire trajectories under the behavior cloning framework, which are able to extract policies from static datasets and fully use the long-sequence modeling capability of the transformer. Given these advancements, extensions and challenges in TRL are reviewed and proposals about future direction are discussed. We hope that this survey can provide a detailed introduction to TRL and motivate future research in this rapidly developing field.
translated by 谷歌翻译
Reinforcement learning (RL) requires skillful definition and remarkable computational efforts to solve optimization and control problems, which could impair its prospect. Introducing human guidance into reinforcement learning is a promising way to improve learning performance. In this paper, a comprehensive human guidance-based reinforcement learning framework is established. A novel prioritized experience replay mechanism that adapts to human guidance in the reinforcement learning process is proposed to boost the efficiency and performance of the reinforcement learning algorithm. To relieve the heavy workload on human participants, a behavior model is established based on an incremental online learning method to mimic human actions. We design two challenging autonomous driving tasks for evaluating the proposed algorithm. Experiments are conducted to access the training and testing performance and learning mechanism of the proposed algorithm. Comparative results against the state-of-the-art methods suggest the advantages of our algorithm in terms of learning efficiency, performance, and robustness.
translated by 谷歌翻译
Development of navigation algorithms is essential for the successful deployment of robots in rapidly changing hazardous environments for which prior knowledge of configuration is often limited or unavailable. Use of traditional path-planning algorithms, which are based on localization and require detailed obstacle maps with goal locations, is not possible. In this regard, vision-based algorithms hold great promise, as visual information can be readily acquired by a robot's onboard sensors and provides a much richer source of information from which deep neural networks can extract complex patterns. Deep reinforcement learning has been used to achieve vision-based robot navigation. However, the efficacy of these algorithms in environments with dynamic obstacles and high variation in the configuration space has not been thoroughly investigated. In this paper, we employ a deep Dyna-Q learning algorithm for room evacuation and obstacle avoidance in partially observable environments based on low-resolution raw image data from an onboard camera. We explore the performance of a robotic agent in environments containing no obstacles, convex obstacles, and concave obstacles, both static and dynamic. Obstacles and the exit are initialized in random positions at the start of each episode of reinforcement learning. Overall, we show that our algorithm and training approach can generalize learning for collision-free evacuation of environments with complex obstacle configurations. It is evident that the agent can navigate to a goal location while avoiding multiple static and dynamic obstacles, and can escape from a concave obstacle while searching for and navigating to the exit.
translated by 谷歌翻译
本文提出了一种基于强化学习的导航方法,在其中我们将占用观测定义为运动原始启发式评估,而不是使用原始传感器数据。我们的方法可以将多传感器融合生成的占用数据快速映射到3D工作区中的轨迹值中。计算有效的轨迹评估允许对动作空间进行密集采样。我们利用不同数据结构中的占用观测来分析其对培训过程和导航性能的影响。我们在基于物理的仿真环境(包括静态和动态障碍)中对两个不同机器人进行训练和测试。我们通过最先进方法的其他常规数据结构对我们的占用表示进行基准测试。在动态环境中,通过物理机器人成功验证了训练有素的导航政策。结果表明,与其他占用表示相比,我们的方法不仅减少了所需的训练时间,还可以改善导航性能。我们的工作和所有相关信息的开源实现可从\ url {https://github.com/river-lab/tentabot}获得。
translated by 谷歌翻译
强化学习(RL)通过原始像素成像和连续的控制任务在视频游戏中表现出了令人印象深刻的表现。但是,RL的性能较差,例如原始像素图像,例如原始像素图像。人们普遍认为,基于物理状态的RL策略(例如激光传感器测量值)比像素学习相比会产生更有效的样品结果。这项工作提出了一种新方法,该方法从深度地图估算中提取信息,以教授RL代理以执行无人机导航(UAV)的无地图导航。我们提出了深度模仿的对比度无监督的优先表示(DEPTH-CUPRL),该表示具有优先重播记忆的估算图像的深度。我们使用RL和对比度学习的组合,根据图像的RL问题引发。从无人驾驶汽车(UAV)对结果的分析中,可以得出结论,我们的深度cuprl方法在无MAP导航能力中对决策和优于最先进的像素的方法有效。
translated by 谷歌翻译
由于互动交通参与者的随机性质和道路结构的复杂性,城市自动驾驶的决策是具有挑战性的。尽管基于强化的学习(RL)决策计划有望处理城市驾驶方案,但它的样本效率低和适应性差。在本文中,我们提出了Scene-Rep Transformer,以通过更好的场景表示编码和顺序预测潜在蒸馏来提高RL决策能力。具体而言,构建了多阶段变压器(MST)编码器,不仅对自我车辆及其邻居之间的相互作用意识进行建模,而且对代理商及其候选路线之间的意图意识。具有自我监督学习目标的连续潜伏变压器(SLT)用于将未来的预测信息提炼成潜在的场景表示,以减少勘探空间并加快训练的速度。基于软演员批评的最终决策模块(SAC)将来自场景rep变压器的精制潜在场景表示输入,并输出驾驶动作。该框架在五个挑战性的模拟城市场景中得到了验证,其性能通过成功率,安全性和效率方面的数据效率和性能的大幅度提高来定量表现出来。定性结果表明,我们的框架能够提取邻居代理人的意图,以帮助做出决策并提供更多多元化的驾驶行为。
translated by 谷歌翻译
Robot navigation in dynamic environments shared with humans is an important but challenging task, which suffers from performance deterioration as the crowd grows. In this paper, multi-subgoal robot navigation approach based on deep reinforcement learning is proposed, which can reason about more comprehensive relationships among all agents (robot and humans). Specifically, the next position point is planned for the robot by introducing history information and interactions in our work. Firstly, based on subgraph network, the history information of all agents is aggregated before encoding interactions through a graph neural network, so as to improve the ability of the robot to anticipate the future scenarios implicitly. Further consideration, in order to reduce the probability of unreliable next position points, the selection module is designed after policy network in the reinforcement learning framework. In addition, the next position point generated from the selection module satisfied the task requirements better than that obtained directly from the policy network. The experiments demonstrate that our approach outperforms state-of-the-art approaches in terms of both success rate and collision rate, especially in crowded human environments.
translated by 谷歌翻译
可靠的导航系统在机器人技术和自动驾驶中具有广泛的应用。当前方法采用开环过程,将传感器输入直接转换为动作。但是,这些开环方案由于概括不佳而在处理复杂而动态的现实情况方面具有挑战性。在模仿人类导航的情况下,我们添加了一个推理过程,将动作转换回内部潜在状态,形成了两阶段的感知,决策和推理的封闭环路。首先,VAE增强的演示学习赋予了模型对基本导航规则的理解。然后,在RL增强交互学习中的两个双重过程彼此产生奖励反馈,并共同增强了避免障碍能力。推理模型可以实质上促进概括和鲁棒性,并促进算法将算法的部署到现实世界的机器人,而无需精心转移。实验表明,与最先进的方法相比,我们的方法更适合新型方案。
translated by 谷歌翻译
Transformer在学习视觉和语言表示方面取得了巨大的成功,这在各种下游任务中都是一般的。在视觉控制中,可以在不同控制任务之间转移的可转移状态表示对于减少训练样本量很重要。但是,将变压器移植到样品有效的视觉控制仍然是一个具有挑战性且未解决的问题。为此,我们提出了一种新颖的控制变压器(CTRLFORMER),具有先前艺术所没有的许多吸引人的好处。首先,CTRLFORMER共同学习视觉令牌和政策令牌之间的自我注意事项机制,在不同的控制任务之间可以学习和转移多任务表示无灾难性遗忘。其次,我们仔细设计了一种对比的增强学习范式来训练Ctrlformer,从而使其能够达到高样本效率,这在控制问题中很重要。例如,在DMControl基准测试中,与最近的高级方法不同,该方法在使用100K样品转移学习后通过在“ Cartpole”任务中产生零分数而失败,CTRLFORMER可以在维持100K样本的同时获得最先进的分数先前任务的性能。代码和模型已在我们的项目主页中发布。
translated by 谷歌翻译
本文研究了如何改善接受深入增强学习训练的导航剂的概括性能和学习速度(DRL)。尽管DRL在无机MAP导航中表现出巨大的潜力,但在训练场景中表现良好的DRL代理在不熟悉的情况下经常表现不佳。在这项工作中,我们建议LIDAR读数的表示是代理商效果退化的关键因素,并提出了一种强大的输入预处理(IP)方法来解决此问题。由于这种方法使用适应性的参数倒数函数来预处理激光雷达读数,因此我们将此方法称为IPAPREC及其归一化版本为IPAPRECN。 IPAPREC/IPAPRECN可以突出显示重要的短距离值,并压缩激光扫描中较重要的长距离值的范围,该值很好地解决了由激光扫描的常规表示引起的问题。通过广泛的模拟和现实世界实验来验证它们的高性能。结果表明,与常规方法相比,我们的方法可以大大改善导航剂的概括性能,并大大减少训练时间。
translated by 谷歌翻译
为了基于深度加强学习(RL)来增强目标驱动的视觉导航的交叉目标和跨场景,我们将信息理论正则化术语引入RL目标。正则化最大化导航动作与代理的视觉观察变换之间的互信息,从而促进更明智的导航决策。这样,代理通过学习变分生成模型来模拟动作观察动态。基于该模型,代理生成(想象)从其当前观察和导航目标的下一次观察。这样,代理学会了解导航操作与其观察变化之间的因果关系,这允许代理通过比较当前和想象的下一个观察来预测导航的下一个动作。 AI2-Thor框架上的交叉目标和跨场景评估表明,我们的方法在某些最先进的模型上获得了平均成功率的10美元。我们进一步评估了我们的模型在两个现实世界中:来自离散的活动视觉数据集(AVD)和带有TurtleBot的连续现实世界环境中的看不见的室内场景导航。我们证明我们的导航模型能够成功实现导航任务这些情景。视频和型号可以在补充材料中找到。
translated by 谷歌翻译
在包装交付,交通监控,搜索和救援操作以及军事战斗订婚等不同应用中,对使用无人驾驶汽车(UAV)(无人机)的需求越来越不断增加。在所有这些应用程序中,无人机用于自动导航环境 - 没有人类互动,执行特定任务并避免障碍。自主无人机导航通常是使用强化学习(RL)来完成的,在该学习中,代理在域中充当专家在避免障碍的同时导航环境。了解导航环境和算法限制在选择适当的RL算法以有效解决导航问题方面起着至关重要的作用。因此,本研究首先确定了无人机导航任务,并讨论导航框架和仿真软件。接下来,根据环境,算法特征,能力和不同无人机导航问题的应用程序对RL算法进行分类和讨论,这将帮助从业人员和研究人员为其无人机导航使用情况选择适当的RL算法。此外,确定的差距和机会将推动无人机导航研究。
translated by 谷歌翻译