Capturing feature information effectively is of great importance in vision tasks. With the development of convolutional neural networks (CNNs), concepts like residual connection and multiple scales promote continual performance gains on diverse deep learning vision tasks. However, the existing methods do not organically combined advantages of these valid ideas. In this paper, we propose a novel CNN architecture called GoogLe2Net, it consists of residual feature-reutilization inceptions (ResFRI) or split residual feature-reutilization inceptions (Split-ResFRI) which create transverse passages between adjacent groups of convolutional layers to enable features flow to latter processing branches and possess residual connections to better process information. Our GoogLe2Net is able to reutilize information captured by foregoing groups of convolutional layers and express multi-scale features at a fine-grained level, which improves performances in image classification. And the inception we proposed could be embedded into inception-like networks directly without any migration costs. Moreover, in experiments based on popular vision datasets, such as CIFAR10 (97.94%), CIFAR100 (85.91%) and Tiny Imagenet (70.54%), we obtain better results on image classification task compared with other modern models.
translated by 谷歌翻译
Representing features at multiple scales is of great importance for numerous vision tasks. Recent advances in backbone convolutional neural networks (CNNs) continually demonstrate stronger multi-scale representation ability, leading to consistent performance gains on a wide range of applications. However, most existing methods represent the multi-scale features in a layerwise manner. In this paper, we propose a novel building block for CNNs, namely Res2Net, by constructing hierarchical residual-like connections within one single residual block. The Res2Net represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. The proposed Res2Net block can be plugged into the state-of-the-art backbone CNN models, e.g., ResNet, ResNeXt, and DLA. We evaluate the Res2Net block on all these models and demonstrate consistent performance gains over baseline models on widely-used datasets, e.g., CIFAR-100 and ImageNet. Further ablation studies and experimental results on representative computer vision tasks, i.e., object detection, class activation mapping, and salient object detection, further verify the superiority of the Res2Net over the state-of-the-art baseline methods. The source code and trained models are available on https://mmcheng.net/res2net/.
translated by 谷歌翻译
Deploying convolutional neural networks (CNNs) on embedded devices is difficult due to the limited memory and computation resources. The redundancy in feature maps is an important characteristic of those successful CNNs, but has rarely been investigated in neural architecture design. This paper proposes a novel Ghost module to generate more feature maps from cheap operations. Based on a set of intrinsic feature maps, we apply a series of linear transformations with cheap cost to generate many ghost feature maps that could fully reveal information underlying intrinsic features. The proposed Ghost module can be taken as a plug-and-play component to upgrade existing convolutional neural networks. Ghost bottlenecks are designed to stack Ghost modules, and then the lightweight Ghost-Net can be easily established. Experiments conducted on benchmarks demonstrate that the proposed Ghost module is an impressive alternative of convolution layers in baseline models, and our GhostNet can achieve higher recognition performance (e.g. 75.7% top-1 accuracy) than MobileNetV3 with similar computational cost on the ImageNet ILSVRC-2012 classification dataset. Code is available at https: //github.com/huawei-noah/ghostnet.
translated by 谷歌翻译
由于存储器和计算资源有限,部署在移动设备上的卷积神经网络(CNNS)是困难的。我们的目标是通过利用特征图中的冗余来设计包括CPU和GPU的异构设备的高效神经网络,这很少在神经结构设计中进行了研究。对于类似CPU的设备,我们提出了一种新颖的CPU高效的Ghost(C-Ghost)模块,以生成从廉价操作的更多特征映射。基于一组内在的特征映射,我们使用廉价的成本应用一系列线性变换,以生成许多幽灵特征图,可以完全揭示内在特征的信息。所提出的C-Ghost模块可以作为即插即用组件,以升级现有的卷积神经网络。 C-Ghost瓶颈旨在堆叠C-Ghost模块,然后可以轻松建立轻量级的C-Ghostnet。我们进一步考虑GPU设备的有效网络。在建筑阶段的情况下,不涉及太多的GPU效率(例如,深度明智的卷积),我们建议利用阶段明智的特征冗余来制定GPU高效的幽灵(G-GHOST)阶段结构。舞台中的特征被分成两个部分,其中使用具有较少输出通道的原始块处理第一部分,用于生成内在特征,另一个通过利用阶段明智的冗余来生成廉价的操作。在基准测试上进行的实验证明了所提出的C-Ghost模块和G-Ghost阶段的有效性。 C-Ghostnet和G-Ghostnet分别可以分别实现CPU和GPU的准确性和延迟的最佳权衡。代码可在https://github.com/huawei-noah/cv-backbones获得。
translated by 谷歌翻译
现有的多尺度解决方案会导致仅增加接受场大小的风险,同时忽略小型接受场。因此,有效构建自适应神经网络以识别各种空间尺度对象是一个具有挑战性的问题。为了解决这个问题,我们首先引入一个新的注意力维度,即除了现有的注意力维度(例如渠道,空间和分支)之外,并提出了一个新颖的选择性深度注意网络,以对称地处理各种视觉中的多尺度对象任务。具体而言,在给定神经网络的每个阶段内的块,即重新连接,输出层次功能映射共享相同的分辨率但具有不同的接收场大小。基于此结构属性,我们设计了一个舞台建筑模块,即SDA,其中包括树干分支和类似SE的注意力分支。躯干分支的块输出融合在一起,以通过注意力分支指导其深度注意力分配。根据提出的注意机制,我们可以动态选择不同的深度特征,这有助于自适应调整可变大小输入对象的接收场大小。这样,跨块信息相互作用会导致沿深度方向的远距离依赖关系。与其他多尺度方法相比,我们的SDA方法结合了从以前的块到舞台输出的多个接受场,从而提供了更广泛,更丰富的有效接收场。此外,我们的方法可以用作其他多尺度网络以及注意力网络的可插入模块,并创造为SDA- $ x $ net。它们的组合进一步扩展了有效的接受场的范围,可以实现可解释的神经网络。我们的源代码可在\ url {https://github.com/qingbeiguo/sda-xnet.git}中获得。
translated by 谷歌翻译
Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections-one between each layer and its subsequent layer-our network has L(L+1) 2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less computation to achieve high performance. Code and pre-trained models are available at https://github.com/liuzhuang13/DenseNet.
translated by 谷歌翻译
如今,基于CNN的架构在学习和提取功能方面的图像分类成功使它们如此受欢迎,但是当我们使用最先进的模型对嘈杂和低质量的图像进行分类时,图像分类的任务变得更加具有挑战性。为了解决这个问题,我们提出了一种新颖的图像分类体系结构,该体系结构以模糊和嘈杂的低分辨率图像学习细节。为了构建我们的新块,我们使用了RES连接和Inception模块想法的想法。使用MNIST数据集,我们进行了广泛的实验,表明引入的体系结构比其他最先进的卷积神经网络更准确,更快。由于我们的模型的特殊特征,它可以通过更少的参数获得更好的结果。
translated by 谷歌翻译
使用卷积神经网络(CNN)已经显着改善了几种图像处理任务,例如图像分类和对象检测。与Reset和Abseralnet一样,许多架构在创建时至少在一个数据集中实现了出色的结果。培训的一个关键因素涉及网络的正规化,这可以防止结构过度装备。这项工作分析了在过去几年中开发的几种正规化方法,显示了不同CNN模型的显着改进。该作品分为三个主要区域:第一个称为“数据增强”,其中所有技术都侧重于执行输入数据的更改。第二个,命名为“内部更改”,旨在描述修改神经网络或内核生成的特征映射的过程。最后一个称为“标签”,涉及转换给定输入的标签。这项工作提出了与关于正则化的其他可用调查相比的两个主要差异:(i)第一个涉及在稿件中收集的论文并非超过五年,并第二个区别是关于可重复性,即所有作品此处推荐在公共存储库中可用的代码,或者它们已直接在某些框架中实现,例如Tensorflow或Torch。
translated by 谷歌翻译
随着计算机愿景任务中的神经网络的不断发展,越来越多的网络架构取得了突出的成功。作为最先进的神经网络架构之一,DenSenet捷径所有特征映射都可以解决模型深度的问题。虽然这种网络架构在低MAC(乘法和累积)上具有优异的准确性,但它需要过度推理时间。为了解决这个问题,HardNet减少了特征映射之间的连接,使得其余连接类似于谐波。然而,这种压缩方法可能导致模型精度和增加的MAC和模型大小降低。该网络架构仅减少了内存访问时间,需要改进其整体性能。因此,我们提出了一种新的网络架构,使用阈值机制来进一步优化连接方法。丢弃不同卷积层的不同数量的连接以压缩阈值中的特征映射。所提出的网络架构使用了三个数据集,CiFar-10,CiFar-100和SVHN,以评估图像分类的性能。实验结果表明,与DENSENET相比,阈值可降低推理时间高达60%,并且在这些数据集上的硬盘相比,训练速度快高达35%的训练速度和20%的误差率降低。
translated by 谷歌翻译
通过在计算机视觉(CV)领域深度学习算法的良好性能,卷积神经网络(CNN)体系结构已成为计算机视觉任务的主要骨干。随着移动设备的广泛使用,基于计算能力低的平台的神经网络模型逐渐引起人们的注意。但是,由于计算能力的限制,移动设备上通常无法使用深度学习算法。本文提出了一个轻巧的卷积神经网络TripLenet,可以在Raspberry Pi上轻松运行。从阈值中的块连接概念中采用,新提出的网络模型会压缩并加速网络模型,减少网络的参数量,并在确保准确性的同时缩短每个图像的推理时间。我们提出的TripLenet和其他最先进的(SOTA)神经网络在Raspberry Pi上使用CIFAR-10和SVHN数据集进行了图像分类实验。实验结果表明,与GhostNet,Mobilenet,Theashnet,EdefityNet和HardNet相比,每图像的推理时间分别缩短了15%,16%,17%,24%和30%。
translated by 谷歌翻译
虽然残留连接使训练非常深的神经网络,但由于其多分支拓扑而​​导致在线推断不友好。这鼓励许多研究人员在推动时没有残留连接的情况下设计DNN。例如,repvgg在部署时将多分支拓扑重新参数化为vgg型(单分支)模型,当网络相对较浅时显示出具有很大的性能。但是,RepVGG不能等效地将Reset转换为VGG,因为重新参数化方法只能应用于线性块,并且必须将非线性层(Relu)放在残余连接之外,这导致了有限的表示能力,特别是更深入网络。在本文中,我们的目标是通过在Resblock上的保留和合并(RM)操作等效地纠正此问题,并提出删除Vanilla Reset中的残留连接。具体地,RM操作允许输入特征映射通过块,同时保留其信息,并在每个块的末尾合并所有信息,这可以去除残差而不改变原始输出。作为一个插件方法,RM操作基本上有三个优点:1)其实现使其实现高比率网络修剪。 2)它有助于打破RepVGG的深度限制。 3)与Reset和RepVGG相比,它导致更好的精度速度折衷网络(RMNet)。我们相信RM操作的意识形态可以激发对未来社区的模型设计的许多见解。代码可用:https://github.com/fxmeng/rmnet。
translated by 谷歌翻译
深度神经网络在计算机视野领域取得了重大进展。最近的研究表明,神经网络架构的深度,宽度和快捷方式连接在其性能中起着至关重要的作用。最先进的神经网络架构DenSenet之一,通过密集连接实现了优异的收敛速率。但是,它仍然具有明显的缺点在内存量的使用情况。在本文中,我们介绍了一种新型的修剪工具,阈值,这是指MOSFET中阈值电压的原理。这项工作采用此方法以不同的方式连接不同深度的块以减少内存的使用情况。它表示为阈值。我们在CiFar10的数据集上评估阈值和其他不同网络。实验表明,HardNet是DenSenet的两倍,在此基础上,阈值比HardNet更快10%,误差率降低10%。
translated by 谷歌翻译
We introduce an extremely computation-efficient CNN architecture named ShuffleNet, which is designed specially for mobile devices with very limited computing power (e.g., 10-150 MFLOPs). The new architecture utilizes two new operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy. Experiments on ImageNet classification and MS COCO object detection demonstrate the superior performance of ShuffleNet over other structures, e.g. lower top-1 error (absolute 7.8%) than recent MobileNet [12] on Ima-geNet classification task, under the computation budget of 40 MFLOPs. On an ARM-based mobile device, ShuffleNet achieves ∼13× actual speedup over AlexNet while maintaining comparable accuracy.
translated by 谷歌翻译
The deployment of deep convolutional neural networks (CNNs) in many real world applications is largely hindered by their high computational cost. In this paper, we propose a novel learning scheme for CNNs to simultaneously 1) reduce the model size; 2) decrease the run-time memory footprint; and 3) lower the number of computing operations, without compromising accuracy. This is achieved by enforcing channel-level sparsity in the network in a simple but effective way. Different from many existing approaches, the proposed method directly applies to modern CNN architectures, introduces minimum overhead to the training process, and requires no special software/hardware accelerators for the resulting models. We call our approach network slimming, which takes wide and large networks as input models, but during training insignificant channels are automatically identified and pruned afterwards, yielding thin and compact models with comparable accuracy. We empirically demonstrate the effectiveness of our approach with several state-of-the-art CNN models, including VGGNet, ResNet and DenseNet, on various image classification datasets. For VGGNet, a multi-pass version of network slimming gives a 20× reduction in model size and a 5× reduction in computing operations.
translated by 谷歌翻译
Deep residual networks were shown to be able to scale up to thousands of layers and still have improving performance. However, each fraction of a percent of improved accuracy costs nearly doubling the number of layers, and so training very deep residual networks has a problem of diminishing feature reuse, which makes these networks very slow to train. To tackle these problems, in this paper we conduct a detailed experimental study on the architecture of ResNet blocks, based on which we propose a novel architecture where we decrease depth and increase width of residual networks. We call the resulting network structures wide residual networks (WRNs) and show that these are far superior over their commonly used thin and very deep counterparts. For example, we demonstrate that even a simple 16-layer-deep wide residual network outperforms in accuracy and efficiency all previous deep residual networks, including thousand-layerdeep networks, achieving new state-of-the-art results on CIFAR, SVHN, COCO, and significant improvements on ImageNet. Our code and models are available at https: //github.com/szagoruyko/wide-residual-networks.
translated by 谷歌翻译
We propose an efficient and unified framework, namely ThiNet, to simultaneously accelerate and compress CNN models in both training and inference stages. We focus on the filter level pruning, i.e., the whole filter would be discarded if it is less important. Our method does not change the original network structure, thus it can be perfectly supported by any off-the-shelf deep learning libraries. We formally establish filter pruning as an optimization problem, and reveal that we need to prune filters based on statistics information computed from its next layer, not the current layer, which differentiates ThiNet from existing methods. Experimental results demonstrate the effectiveness of this strategy, which has advanced the state-of-the-art. We also show the performance of ThiNet on ILSVRC-12 benchmark. ThiNet achieves 3.31× FLOPs reduction and 16.63× compression on VGG-16, with only 0.52% top-5 accuracy drop. Similar experiments with ResNet-50 reveal that even for a compact network, ThiNet can also reduce more than half of the parameters and FLOPs, at the cost of roughly 1% top-5 accuracy drop. Moreover, the original VGG-16 model can be further pruned into a very small model with only 5.05MB model size, preserving AlexNet level accuracy but showing much stronger generalization ability.
translated by 谷歌翻译
Designing a high-efficiency and high-quality expressive network architecture has always been the most important research topic in the field of deep learning. Most of today's network design strategies focus on how to integrate features extracted from different layers, and how to design computing units to effectively extract these features, thereby enhancing the expressiveness of the network. This paper proposes a new network design strategy, i.e., to design the network architecture based on gradient path analysis. On the whole, most of today's mainstream network design strategies are based on feed forward path, that is, the network architecture is designed based on the data path. In this paper, we hope to enhance the expressive ability of the trained model by improving the network learning ability. Due to the mechanism driving the network parameter learning is the backward propagation algorithm, we design network design strategies based on back propagation path. We propose the gradient path design strategies for the layer-level, the stage-level, and the network-level, and the design strategies are proved to be superior and feasible from theoretical analysis and experiments.
translated by 谷歌翻译
X射线图像在制造业的质量保证中起着重要作用,因为它可以反映焊接区域的内部条件。然而,不同缺陷类型的形状和规模大大变化,这使得模型检测焊接缺陷的挑战性。在本文中,我们提出了一种基于卷积神经网络的焊接缺陷检测方法,即打火机和更快的YOLO(LF-YOLO)。具体地,增强的多尺度特征(RMF)模块旨在实现基于参数和无参数的多尺度信息提取操作。 RMF使得提取的特征映射能够代表更丰富的信息,该信息是通过卓越的层级融合结构实现的。为了提高检测网络的性能,我们提出了一个有效的特征提取(EFE)模块。 EFE处理具有极低消耗量的输入数据,并提高了实际行业中整个网络的实用性。实验结果表明,我们的焊接缺陷检测网络在性能和消耗之间实现了令人满意的平衡,达到92.9平均平均精度MAP50,每秒61.5帧(FPS)。为了进一步证明我们方法的能力,我们在公共数据集MS Coco上测试它,结果表明我们的LF-YOLO具有出色的多功能性检测性能。代码可在https://github.com/lmomoy/lf-yolo上获得。
translated by 谷歌翻译
视觉变压器由于能够捕获图像中的长期依赖性的能力而成功地应用于图像识别任务。但是,变压器与现有卷积神经网络(CNN)之间的性能和计算成本仍然存在差距。在本文中,我们旨在解决此问题,并开发一个网络,该网络不仅可以超越规范变压器,而且可以超越高性能卷积模型。我们通过利用变压器来捕获长期依赖性和CNN来建模本地特征,从而提出了一个新的基于变压器的混合网络。此外,我们将其扩展为获得一个称为CMT的模型家族,比以前的基于卷积和基于变压器的模型获得了更好的准确性和效率。特别是,我们的CMT-S在ImageNet上获得了83.5%的TOP-1精度,而在拖鞋上的拖曳率分别比现有的DEIT和EficitiveNet小14倍和2倍。拟议的CMT-S还可以很好地概括CIFAR10(99.2%),CIFAR100(91.7%),花(98.7%)以及其他具有挑战性的视觉数据集,例如可可(44.3%地图),计算成本较小。
translated by 谷歌翻译
神经网络的宽度很重要,因为增加了宽度,这必然会增加模型容量。但是,网络的性能不会随宽度而线性地提高,并且很快就会饱和。在这种情况下,我们认为,增加网络数量(合奏)的数量比纯粹增加宽度可以实现更好的准确性效率折衷。为了证明这一点,一个大型网络就其参数和正则化组件分为几个小网络。这些小型网络中的每一个都有原始参数的一小部分。然后,我们一起训练这些小型网络,使他们看到相同数据的各种观点,以增加它们的多样性。在此共同培训过程中,网络也可以相互学习。结果,小型网络可以比几乎没有或没有额外参数或拖船的大型网络获得更好的合奏性能,即实现更好的准确性效率折衷。通过并发运行,小型网络还可以比大型推理速度更快。以上所有内容都表明,网络的数量是模型缩放的新维度。我们通过广泛的实验在共同基准上使用8种不同的神经体系结构来验证我们的论点。该代码可在\ url {https://github.com/freeformrobotics/divide-and-co-training}中获得。
translated by 谷歌翻译