心脏死亡和心律不齐占全世界所有死亡的很大一部分。心电图(ECG)是用于心血管疾病的最广泛使用的筛查工具。传统上,ECG信号是手动分类的,需要经验和良好的技巧,同时又耗时且容易出错。因此,机器学习算法因其执行复杂数据分析的能力而被广泛采用。从ECG(主要是Q,r和s)中引入的特征广泛用于心律不齐。在这项工作中,我们证明了使用混合功能和三种不同模型的ECG分类的性能提高了,这是我们过去提出的1D卷积神经网络(CNN)模型的建立。这项工作中提出的基于RR间隔的模型的准确性为98.98%,这是对基线模型的改进。为了使模型免疫噪声,我们使用频率功能更新了模型,并在噪声的存在下实现了良好的持续性能,精度略低为98.69%。此外,开发了另一个结合频率特征和RR间隔功能的模型,在嘈杂的环境中,持续性能良好,高精度为99%。由于其高精度和噪声免疫力,结合了多个混合功能的拟议模型非常适合门诊可穿戴感应应用。
translated by 谷歌翻译
深神经网络(DNN)是医疗应用中有前途的工具。但是,由于通信的能源成本很高,因此在电池供电设备上实施复杂的DNN是具有挑战性的。在这项工作中,开发了卷积神经网络模型,用于检测心电图(ECG)信号的房颤。该模型表明,尽管接受了有限的可变长度输入数据训练,但表现出了高性能。重量修剪和对数定量合并以引入稀疏性并降低模型大小,可以利用这些稀疏性,以减少数据移动和降低计算复杂性。最终模型达到了91.1%的模型压缩率,同时保持高模型精度为91.7%,损失小于1%。
translated by 谷歌翻译
癌症护理中的治疗决策受到随机对照试验(RCT)的治疗效应估计的指导。 RCT估计在某个人群中,一种治疗与另一种治疗的平均效应。但是,治疗可能对人群中的每个患者都不同样有效。了解针对特定患者和肿瘤特征量身定制的治疗的有效性将实现个性化的治疗决策。通过平均RCT中不同患者亚组的结果来获得量身定制的治疗效果,需要大量的患者在所有相关亚组中具有足够的统计能力,以实现所有可能的治疗。美国癌症联合委员会(AJCC)建议研究人员开发结果预测模型(OPMS),以实现个性化治疗决策。 OPM有时称为风险模型或预后模型,使用患者和肿瘤特征来预测患者的结局,例如总体生存。假设这些预测对于使用“只有在OPM预测患者具有高复发风险的情况下开出化学疗法的规则”之类的规则,对治疗决策有用。 AJCC认识到可靠预测的重要性,发布了OPM的清单,以确保设计OPM设计的患者群体的可靠OPM预测准确性。但是,准确的结果预测并不意味着这些预测会产生良好的治疗决策。从这个角度来看,我们表明OPM依靠固定的治疗政策,这意味着被发现可以准确预测验证研究结果的OPM在用于治疗决策的情况下仍会导致患者伤害。然后,我们提供有关如何开发对个性化治疗决策有用的模型以及如何评估模型是否具有决策价值的指导。
translated by 谷歌翻译
受到吉布森(Gibson)在人类视野中提供的对象的概念的启发,我们提出了一个问题:代理商如何学会对只有单一瞥见的新物体或环境进行整个行动政策进行预测?为了解决这个问题,我们介绍了通用政策功能(UPF)的概念,这些概念是状态到行动映射,不仅可以推广到新目标,而且最重要的是对新颖,看不见的环境。具体而言,我们考虑了有效地学习计算能力和通信能力有限的代理商的政策的问题,这些策略是在边缘设备中经常遇到的约束。我们提出了Hyper-Universal策略近似器(HUPA),这是一种基于超网络的模型,可从单个图像中生成小型任务和环境条件策略网络,具有良好的概括属性。我们的结果表明,HUPA的表现明显优于基于嵌入的替代方案,用于生成大小约束的策略。尽管这项工作仅限于简单的基于地图的导航任务,但未来的工作包括将HUPA背后的原理应用于学习对象和环境的更多一般负担。
translated by 谷歌翻译
杂散的相关性允许灵活的模型在培训期间预测很好,但在相关的测试人群中仍然很差。最近的工作表明,满足涉及相关诱导\ exuritiT {Nuisance}变量的特定独立性的模型在其测试性能上保证了。执行此类独立性需要在培训期间观察到滋扰。然而,滋扰,例如人口统计或图像背景标签通常丢失。在观察到的数据上实施独立并不意味着整个人口的独立性。在这里,我们派生{MMD}估计用于缺失滋扰下的不变性目标。在仿真和临床数据上,通过这些估计优化实现测试性能类似于使用完整数据的估算器。
translated by 谷歌翻译
Existing federated classification algorithms typically assume the local annotations at every client cover the same set of classes. In this paper, we aim to lift such an assumption and focus on a more general yet practical non-IID setting where every client can work on non-identical and even disjoint sets of classes (i.e., client-exclusive classes), and the clients have a common goal which is to build a global classification model to identify the union of these classes. Such heterogeneity in client class sets poses a new challenge: how to ensure different clients are operating in the same latent space so as to avoid the drift after aggregation? We observe that the classes can be described in natural languages (i.e., class names) and these names are typically safe to share with all parties. Thus, we formulate the classification problem as a matching process between data representations and class representations and break the classification model into a data encoder and a label encoder. We leverage the natural-language class names as the common ground to anchor the class representations in the label encoder. In each iteration, the label encoder updates the class representations and regulates the data representations through matching. We further use the updated class representations at each round to annotate data samples for locally-unaware classes according to similarity and distill knowledge to local models. Extensive experiments on four real-world datasets show that the proposed method can outperform various classical and state-of-the-art federated learning methods designed for learning with non-IID data.
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
The purpose of this work was to tackle practical issues which arise when using a tendon-driven robotic manipulator with a long, passive, flexible proximal section in medical applications. A separable robot which overcomes difficulties in actuation and sterilization is introduced, in which the body containing the electronics is reusable and the remainder is disposable. A control input which resolves the redundancy in the kinematics and a physical interpretation of this redundancy are provided. The effect of a static change in the proximal section angle on bending angle error was explored under four testing conditions for a sinusoidal input. Bending angle error increased for increasing proximal section angle for all testing conditions with an average error reduction of 41.48% for retension, 4.28% for hysteresis, and 52.35% for re-tension + hysteresis compensation relative to the baseline case. Two major sources of error in tracking the bending angle were identified: time delay from hysteresis and DC offset from the proximal section angle. Examination of these error sources revealed that the simple hysteresis compensation was most effective for removing time delay and re-tension compensation for removing DC offset, which was the primary source of increasing error. The re-tension compensation was also tested for dynamic changes in the proximal section and reduced error in the final configuration of the tip by 89.14% relative to the baseline case.
translated by 谷歌翻译
Compliance in actuation has been exploited to generate highly dynamic maneuvers such as throwing that take advantage of the potential energy stored in joint springs. However, the energy storage and release could not be well-timed yet. On the contrary, for multi-link systems, the natural system dynamics might even work against the actual goal. With the introduction of variable stiffness actuators, this problem has been partially addressed. With a suitable optimal control strategy, the approximate decoupling of the motor from the link can be achieved to maximize the energy transfer into the distal link prior to launch. However, such continuous stiffness variation is complex and typically leads to oscillatory swing-up motions instead of clear launch sequences. To circumvent this issue, we investigate decoupling for speed maximization with a dedicated novel actuator concept denoted Bi-Stiffness Actuation. With this, it is possible to fully decouple the link from the joint mechanism by a switch-and-hold clutch and simultaneously keep the elastic energy stored. We show that with this novel paradigm, it is not only possible to reach the same optimal performance as with power-equivalent variable stiffness actuation, but even directly control the energy transfer timing. This is a major step forward compared to previous optimal control approaches, which rely on optimizing the full time-series control input.
translated by 谷歌翻译
The previous fine-grained datasets mainly focus on classification and are often captured in a controlled setup, with the camera focusing on the objects. We introduce the first Fine-Grained Vehicle Detection (FGVD) dataset in the wild, captured from a moving camera mounted on a car. It contains 5502 scene images with 210 unique fine-grained labels of multiple vehicle types organized in a three-level hierarchy. While previous classification datasets also include makes for different kinds of cars, the FGVD dataset introduces new class labels for categorizing two-wheelers, autorickshaws, and trucks. The FGVD dataset is challenging as it has vehicles in complex traffic scenarios with intra-class and inter-class variations in types, scale, pose, occlusion, and lighting conditions. The current object detectors like yolov5 and faster RCNN perform poorly on our dataset due to a lack of hierarchical modeling. Along with providing baseline results for existing object detectors on FGVD Dataset, we also present the results of a combination of an existing detector and the recent Hierarchical Residual Network (HRN) classifier for the FGVD task. Finally, we show that FGVD vehicle images are the most challenging to classify among the fine-grained datasets.
translated by 谷歌翻译