There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
我们展示了Pytorch Connectomics(Pytc),一个开源深度学习框架,用于体积显微镜图像的语义和实例分割,基于Pytorch。我们展示了Pytc在Connectomics领域的有效性,其旨在在纳米分辨率下进行线粒体,突触像Mitochondria这样的细胞器,以了解动物脑中的神经元通信,代谢和发育。 Pytc是一个可伸缩且灵活的工具箱,可以在不同的尺度上处理数据集,并支持多任务和半监督学习,以更好地利用昂贵的专家注释和培训期间的大量未标记数据。通过在不编码的情况下改变配置选项并且适用于不同组织和成像方式的其他2D和3D分段任务,可以在Pytc中容易地实现这些功能。定量方面,我们的框架在Cremi挑战中实现了突触裂缝分割的最佳性能(以相对6.1美元\%$)和线粒体和神经元核细胞分割的竞争性能。代码和教程在https://connectomics.readthedocs.io上公开提供。
translated by 谷歌翻译
使用(半)自动显微镜生成的大规模电子显微镜(EM)数据集已成为EM中的标准。考虑到大量数据,对所有数据的手动分析都是不可行的,因此自动分析至关重要。自动分析的主要挑战包括分析和解释生物医学图像的注释,并与实现高通量相结合。在这里,我们回顾了自动计算机技术的最新最新技术以及分析细胞EM结构的主要挑战。关于EM数据的注释,分割和可扩展性,讨论了过去五年来开发的高级计算机视觉,深度学习和软件工具。自动图像采集和分析的集成将允许用纳米分辨率对毫米范围的数据集进行高通量分析。
translated by 谷歌翻译
机器学习和计算机视觉技术近年来由于其自动化,适合性和产生惊人结果的能力而迅速发展。因此,在本文中,我们调查了2014年至2022年之间发表的关键研究,展示了不同的机器学习算法研究人员用来分割肝脏,肝肿瘤和肝脉管结构的研究。我们根据感兴趣的组织(肝果,肝肿瘤或肝毒剂)对被调查的研究进行了划分,强调了同时解决多个任务的研究。此外,机器学习算法被归类为受监督或无监督的,如果属于某个方案的工作量很大,则将进一步分区。此外,对文献和包含上述组织面具的网站发现的不同数据集和挑战进行了彻底讨论,强调了组织者的原始贡献和其他研究人员的贡献。同样,在我们的评论中提到了文献中过度使用的指标,这强调了它们与手头的任务的相关性。最后,强调创新研究人员应对需要解决的差距的关键挑战和未来的方向,例如许多关于船舶分割挑战的研究的稀缺性以及为什么需要早日处理他们的缺席。
translated by 谷歌翻译
医学计算机视觉的最新自我监督进步利用了在下游任务(例如分割)之前预处理的全球和局部解剖自我相似性。但是,当前方法假设I.I.D.图像采集是在临床研究设计中无效的,其中随访纵向扫描跟踪特定于主体的时间变化。此外,现有的自我监督方法用于医学上相关的图像到图像体系结构仅利用空间或时间自相似性,并且仅通过在单个图像尺度上应用的损失来进行,而天真的多尺度空间时空扩展崩溃了解决方案。对于这些目的,本文做出了两种贡献:(1)它提出了一种局部和多规模的时空表示方法,用于对纵向图像进行训练的图像到图像架构。它利用了学到的多尺度内部主体内特征的时空自相似性来进行训练,并开发出几种特征正规化,以避免崩溃的身份表示。 (2)在填充期间,它提出了一个令人惊讶的简单的自我监督分割一致性正规化以利用受试者内部的相关性。该框架以单次分割设置为基准,该框架的表现优于良好调整的随机定位基线和为I.I.D设计的当前自我监督技术。和纵向数据集。在纵向神经退行性的成年MRI和发育的婴儿脑MRI中,这些改进都得到了证明,并产生了更高的性能和纵向一致性。
translated by 谷歌翻译
我们提出了一种新颖的方法,该方法将基于机器学习的交互式图像分割结合在一起,使用Supersoxels与聚类方法结合了用于自动识别大型数据集中类似颜色的图像的聚类方法,从而使分类器的指导重复使用。我们的方法解决了普遍的颜色可变性的问题,并且在生物学和医学图像中通常不可避免,这通常会导致分割恶化和量化精度,从而大大降低了必要的训练工作。效率的这种提高促进了大量图像的量化,从而为高通量成像中的最新技术进步提供了交互式图像分析。所呈现的方法几乎适用于任何图像类型,并代表通常用于图像分析任务的有用工具。
translated by 谷歌翻译
随着深度学习方法的进步,如深度卷积神经网络,残余神经网络,对抗网络的进步。 U-Net架构最广泛利用生物医学图像分割,以解决目标区域或子区域的识别和检测的自动化。在最近的研究中,基于U-Net的方法在不同应用中显示了最先进的性能,以便在脑肿瘤,肺癌,阿尔茨海默,乳腺癌等疾病的早期诊断和治疗中发育计算机辅助诊断系统等,使用各种方式。本文通过描述U-Net框架来提出这些方法的成功,然后通过执行1)型号的U-Net变体进行综合分析,2)模特内分类,建立更好的见解相关的挑战和解决方案。此外,本文还强调了基于U-Net框架在持续的大流行病,严重急性呼吸综合征冠状病毒2(SARS-COV-2)中的贡献也称为Covid-19。最后,分析了这些U-Net变体的优点和相似性以及生物医学图像分割所涉及的挑战,以发现该领域的未来未来的研究方向。
translated by 谷歌翻译
大脑的血管为人脑提供所需的营养和氧气。作为大脑血液供应的脆弱部分,小血管的病理可能会引起严重的问题,例如脑小血管疾病(CSVD)。还显示CSVD与神经变性有关,例如阿尔茨海默氏病。随着7个特斯拉MRI系统的发展,可以实现较高的空间图像分辨率,从而使大脑中非常小的血管描绘。非深度学习的方法进行血管分割的方法,例如,弗兰吉的血管增强,随后的阈值能够将培养基分割至大容器,但通常无法分割小血管。这些方法对小容器的敏感性可以通过广泛的参数调整或手动校正来提高,尽管使它们耗时,费力,并且对于较大的数据集而言是不可行的。本文提出了一个深度学习架构,以自动在7特斯拉3D飞行时间(TOF)磁共振血管造影(MRA)数据中自动分割小血管。该算法对仅11个受试者的小型半自动分段数据进行训练和评估;使用六个进行培训,两个进行验证,三个进行测试。基于U-NET多尺度监督的深度学习模型使用训练子集进行了训练,并以一种自我监督的方式使用变形 - 意识到的学习以改善概括性能。针对测试集对拟议的技术进行了定量和定性评估,并获得了80.44 $ \ pm $ 0.83的骰子得分。此外,将所提出的方法的结果与选定的手动分割区域(62.07结果骰子)进行了比较,并通过变形感知的学习显示出显着改善(18.98 \%)。
translated by 谷歌翻译
临床实践中使用的医学图像是异质的,与学术研究中研究的扫描质量不同。在解剖学,伪影或成像参数不寻常或方案不同的极端情况下,预处理会分解。最需要对这些变化的方法可靠。提出了一种新颖的深度学习方法,以将人脑快速分割为132个区域。提出的模型使用有效的U-NET型网络,并从不同视图和分层关系的交点上受益,以在端到端训练期间融合正交2D平面和脑标签。部署了弱监督的学习,以利用部分标记的数据来进行整个大脑分割和颅内体积(ICV)的估计。此外,数据增强用于通过生成具有较高的脑扫描的磁共振成像(MRI)数据来扩展模型训练,同时保持数据隐私。提出的方法可以应用于脑MRI数据,包括头骨或任何其他工件,而无需预处理图像或性能下降。与最新的一些实验相比,使用了不同的Atlases的几项实验,以评估受过训练模型的分割性能,并且与不同内部和不同内部和不同内部方法的现有方法相比,结果显示了较高的分割精度和鲁棒性。间域数据集。
translated by 谷歌翻译
通过最大化示例的不同转换“视图”之间的相似性来构建自我监督学习(SSL)构建表示的最先进的方法。然而,在用于创建视图的转换中没有足够的多样性,难以克服数据中的滋扰变量并构建丰富的表示。这激励了数据集本身来查找类似但不同的样本,以彼此的视图。在本文中,我们介绍了我自己的观点(MISOW),一种新的自我监督学习方法,在数据集中定义预测的不同目标。我们的方法背后的想法是主动挖掘观点,发现在网络的表示空间中的邻居中的样本,然后从一个样本的潜在表示,附近样本的表示。在展示计算机愿景中使用的基准测试中,我们突出了在神经科学的新应用中突出了这个想法的力量,其中SSL尚未应用。在测试多单元神经记录时,我们发现Myow在所有示例中表现出其他自我监督的方法(在某些情况下超过10%),并且经常超越监督的基线。通过MOSO,我们表明可以利用数据的多样性来构建丰富的观点,并在增强的新域中利用自我监督,其中包括有限或未知。
translated by 谷歌翻译
自我监督的学习(SSL)通过大量未标记的数据的先知,在各种医学成像任务上取得了出色的性能。但是,对于特定的下游任务,仍然缺乏有关如何选择合适的借口任务和实现细节的指令书。在这项工作中,我们首先回顾了医学成像分析领域中自我监督方法的最新应用。然后,我们进行了广泛的实验,以探索SSL中的四个重要问题用于医学成像,包括(1)自我监督预处理对不平衡数据集的影响,(2)网络体系结构,(3)上游任务对下游任务和下游任务和下游任务的适用性(4)SSL和常用政策用于深度学习的堆叠效果,包括数据重新采样和增强。根据实验结果,提出了潜在的指南,以在医学成像中进行自我监督预处理。最后,我们讨论未来的研究方向并提出问题,以了解新的SSL方法和范式时要注意。
translated by 谷歌翻译
高质量注释的医学成像数据集的稀缺性是一个主要问题,它与医学成像分析领域的机器学习应用相撞并阻碍了其进步。自我监督学习是一种最近的培训范式,可以使学习强大的表示无需人类注释,这可以被视为有效的解决方案,以解决带注释的医学数据的稀缺性。本文回顾了自我监督学习方法的最新研究方向,用于图像数据,并将其专注于其在医学成像分析领域的应用。本文涵盖了从计算机视野领域的最新自我监督学习方法,因为它们适用于医学成像分析,并将其归类为预测性,生成性和对比性方法。此外,该文章涵盖了40个在医学成像分析中自学学习领域的最新研究论文,旨在阐明该领域的最新创新。最后,本文以该领域的未来研究指示结束。
translated by 谷歌翻译
本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
背景和目标:现有的医学图像分割的深度学习平台主要集中于完全监督的细分,该分段假设可以使用充分而准确的像素级注释。我们旨在开发一种新的深度学习工具包,以支持对医学图像分割的注释有效学习,该学习可以加速并简单地开发具有有限注释预算的深度学习模型,例如,从部分,稀疏或嘈杂的注释中学习。方法:我们提出的名为Pymic的工具包是用于医学图像分割任务的模块化深度学习平台。除了支持开发高性能模型以进行全面监督分割的基本组件外,它还包含几个高级组件,这些高级组件是针对从不完善的注释中学习的几个高级组件,例如加载带注释和未经通知的图像,未经通知的,部分或无效的注释图像的损失功能,以及多个网络之间共同学习的培训程序。Pymic构建了Pytorch框架,并支持半监督,弱监督和噪声的学习方法用于医学图像分割。结果:我们介绍了基于PYMIC的四个说明性医学图像细分任务:(1)在完全监督的学习上实现竞争性能; (2)半监督心脏结构分割,只有10%的训练图像; (3)使用涂鸦注释弱监督的分割; (4)从嘈杂的标签中学习以进行胸部X光片分割。结论:Pymic工具包易于使用,并促进具有不完美注释的医学图像分割模型的有效开发。它是模块化和灵活的,它使研究人员能够开发出低注释成本的高性能模型。源代码可在以下网址获得:https://github.com/hilab-git/pymic。
translated by 谷歌翻译
The International Workshop on Reading Music Systems (WoRMS) is a workshop that tries to connect researchers who develop systems for reading music, such as in the field of Optical Music Recognition, with other researchers and practitioners that could benefit from such systems, like librarians or musicologists. The relevant topics of interest for the workshop include, but are not limited to: Music reading systems; Optical music recognition; Datasets and performance evaluation; Image processing on music scores; Writer identification; Authoring, editing, storing and presentation systems for music scores; Multi-modal systems; Novel input-methods for music to produce written music; Web-based Music Information Retrieval services; Applications and projects; Use-cases related to written music. These are the proceedings of the 2nd International Workshop on Reading Music Systems, held in Delft on the 2nd of November 2019.
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
尽管近年来从CT/MRI扫描中自动腹部多器官分割取得了很大进展,但由于缺乏各种临床方案的大规模基准,对模型的能力的全面评估受到阻碍。收集和标记3D医学数据的高成本的限制,迄今为止的大多数深度学习模型都由具有有限数量的感兴趣或样品器官的数据集驱动,这仍然限制了现代深层模型的力量提供各种方法的全面且公平的估计。为了减轻局限性,我们提出了AMO,这是一个大规模,多样的临床数据集,用于腹部器官分割。 AMOS提供了从多中心,多供应商,多模式,多相,多疾病患者收集的500 CT和100次MRI扫描,每个患者均具有15个腹部器官的体素级注释,提供了具有挑战性的例子,并提供了挑战性的例子和测试结果。在不同的目标和场景下研究健壮的分割算法。我们进一步基准了几种最先进的医疗细分模型,以评估此新挑战性数据集中现有方法的状态。我们已公开提供数据集,基准服务器和基线,并希望激发未来的研究。信息可以在https://amos22.grand-challenge.org上找到。
translated by 谷歌翻译
Recent advances in self-supervised learning (SSL) in computer vision are primarily comparative, whose goal is to preserve invariant and discriminative semantics in latent representations by comparing siamese image views. However, the preserved high-level semantics do not contain enough local information, which is vital in medical image analysis (e.g., image-based diagnosis and tumor segmentation). To mitigate the locality problem of comparative SSL, we propose to incorporate the task of pixel restoration for explicitly encoding more pixel-level information into high-level semantics. We also address the preservation of scale information, a powerful tool in aiding image understanding but has not drawn much attention in SSL. The resulting framework can be formulated as a multi-task optimization problem on the feature pyramid. Specifically, we conduct multi-scale pixel restoration and siamese feature comparison in the pyramid. In addition, we propose non-skip U-Net to build the feature pyramid and develop sub-crop to replace multi-crop in 3D medical imaging. The proposed unified SSL framework (PCRLv2) surpasses its self-supervised counterparts on various tasks, including brain tumor segmentation (BraTS 2018), chest pathology identification (ChestX-ray, CheXpert), pulmonary nodule detection (LUNA), and abdominal organ segmentation (LiTS), sometimes outperforming them by large margins with limited annotations.
translated by 谷歌翻译
语义图像分割是手术中的背景知识和自治机器人的重要前提。本领域的状态专注于在微创手术期间获得的传统RGB视频数据,但基于光谱成像数据的全景语义分割并在开放手术期间获得几乎没有注意到日期。为了解决文献中的这种差距,我们正在研究基于在开放手术环境中获得的猪的高光谱成像(HSI)数据的以下研究问题:(1)基于神经网络的HSI数据的充分表示是完全自动化的器官分割,尤其是关于数据的空间粒度(像素与Superpixels与Patches与完整图像)的空间粒度? (2)在执行语义器官分割时,是否有利用HSI数据使用HSI数据,即RGB数据和处理的HSI数据(例如氧合等组织参数)?根据基于20猪的506个HSI图像的全面验证研究,共注释了19个类,基于深度的学习的分割性能 - 贯穿模态 - 与输入数据的空间上下文一致。未处理的HSI数据提供优于RGB数据或来自摄像机提供商的处理数据,其中优势随着输入到神经网络的输入的尺寸而增加。最大性能(应用于整个图像的HSI)产生了0.89(标准偏差(SD)0.04)的平均骰子相似度系数(DSC),其在帧间间变异性(DSC为0.89(SD 0.07)的范围内。我们得出结论,HSI可以成为全自动手术场景理解的强大的图像模型,其具有传统成像的许多优点,包括恢复额外功能组织信息的能力。
translated by 谷歌翻译
数据采集​​和注释中的困难基本上限制了3D医学成像应用的训练数据集的样本尺寸。结果,在没有足够的预训练参数的情况下,构建来自划痕的高性能3D卷积神经网络仍然是一项艰巨的任务。以前关于3D预培训的努力经常依赖于自我监督的方法,它在未标记的数据上使用预测或对比学习来构建不变的3D表示。然而,由于大规模监督信息的不可用,从这些学习框架获得语义不变和歧视性表示仍然存在问题。在本文中,我们重新审视了一种创新但简单的完全监督的3D网络预训练框架,以利用来自大型2D自然图像数据集的语义监督。通过重新设计的3D网络架构,重新设计的自然图像用于解决数据稀缺问题并开发强大的3D表示。四个基准数据集上的综合实验表明,所提出的预先接受的模型可以有效地加速收敛,同时还提高了各种3D医学成像任务,例如分类,分割和检测的准确性。此外,与从头划伤的训练相比,它可以节省高达60%的注释工作。在NIH Deeplesion数据集上,它同样地实现了最先进的检测性能,优于早期的自我监督和完全监督的预训练方法,以及从头训练进行培训的方法。为了促进3D医疗模型的进一步发展,我们的代码和预先接受的模型权重在https://github.com/urmagicsmine/cspr上公开使用。
translated by 谷歌翻译