诸如最大熵正则化之类的政策正则化方法被广泛用于增强学习以提高学习政策的鲁棒性。在本文中,我们展示了这种鲁棒性是如何通过对冲的奖励功能扰动而产生的,奖励功能是从想象中的对手设定的限制设置中选择的。使用凸双重性,我们表征了KL和Alpha-Divergence正则化的一组强大的对抗奖励扰动集,其中包括香农和Tsallis熵正则定期为特殊情况。重要的是,可以在此强大集合中给出概括保证。我们提供了有关最坏的奖励扰动的详细讨论,并提供了直观的经验示例,以说明这种稳健性及其与概括的关系。最后,我们讨论我们的分析如何补充并扩展对对抗奖励鲁棒性和路径一致性最佳条件的先前结果。
translated by 谷歌翻译
我们在专家和学习者之间的过渡动力学下研究了逆钢筋学习(IRL)问题。具体而言,我们考虑最大因果熵(MCE)IRL学习者模型,并根据专家和学习者的转换动态之间的$ \ ell_1 $ -disce提供学习者的性能下降的紧密上限。利用强大的RL文献的洞察力,我们提出了一种强大的MCE IRL算法,这是一种有效的方法来帮助这种不匹配。最后,我们经验展示了我们算法的稳定性能,而在有限和连续的MDP问题中的转换动态不匹配下的标准MCE IRL算法相比。
translated by 谷歌翻译
策略梯度方法适用于复杂的,不理解的,通过对参数化的策略进行随机梯度下降来控制问题。不幸的是,即使对于可以通过标准动态编程技术解决的简单控制问题,策略梯度算法也会面临非凸优化问题,并且被广泛理解为仅收敛到固定点。这项工作确定了结构属性 - 通过几个经典控制问题共享 - 确保策略梯度目标函数尽管是非凸面,但没有次优的固定点。当这些条件得到加强时,该目标满足了产生收敛速率的Polyak-lojasiewicz(梯度优势)条件。当其中一些条件放松时,我们还可以在任何固定点的最佳差距上提供界限。
translated by 谷歌翻译
在许多顺序决策问题(例如,机器人控制,游戏播放,顺序预测),人类或专家数据可用包含有关任务的有用信息。然而,来自少量专家数据的模仿学习(IL)可能在具有复杂动态的高维环境中具有挑战性。行为克隆是一种简单的方法,由于其简单的实现和稳定的收敛而被广泛使用,但不利用涉及环境动态的任何信息。由于对奖励和政策近似器或偏差,高方差梯度估计器,难以在实践中难以在实践中努力训练的许多现有方法。我们介绍了一种用于动态感知IL的方法,它通过学习单个Q函数来避免对抗训练,隐含地代表奖励和策略。在标准基准测试中,隐式学习的奖励显示与地面真实奖励的高正面相关性,说明我们的方法也可以用于逆钢筋学习(IRL)。我们的方法,逆软Q学习(IQ-Learn)获得了最先进的结果,在离线和在线模仿学习设置中,显着优于现有的现有方法,这些方法都在所需的环境交互和高维空间中的可扩展性中,通常超过3倍。
translated by 谷歌翻译
离线增强学习(RL)的样本效率保证通常依赖于对功能类别(例如Bellman-Completeness)和数据覆盖范围(例如,全政策浓缩性)的强有力的假设。尽管最近在放松这些假设方面做出了努力,但现有作品只能放松这两个因素之一,从而使另一个因素的强烈假设完好无损。作为一个重要的开放问题,我们是否可以实现对这两个因素的假设较弱的样本效率离线RL?在本文中,我们以积极的态度回答了这个问题。我们基于MDP的原始偶对偶进行分析了一种简单的算法,其中双重变量(打折占用)是使用密度比函数对离线数据进行建模的。通过适当的正则化,我们表明该算法仅在可变性和单极浓缩性下具有多项式样品的复杂性。我们还基于不同的假设提供了替代分析,以阐明离线RL原始二算法的性质。
translated by 谷歌翻译
强大的马尔可夫决策过程(MDP)用于在不确定环境中的动态优化应用,并已进行了广泛的研究。 MDP的许多主要属性和算法(例如价值迭代和策略迭代)直接扩展到RMDP。令人惊讶的是,没有已知的MDP凸优化公式用于求解RMDP。这项工作描述了在经典的SA截形和S型角假设下RMDP的第一个凸优化公式。我们通过使用熵正则化和变量的指数变化来得出具有线性数量和约束的线性数量的凸公式。我们的公式可以与来自凸优化的有效方法结合使用,以获得以不确定概率求解RMDP的新算法。我们进一步简化了使用多面体不确定性集的RMDP的公式。我们的工作打开了RMDP的新研究方向,可以作为获得RMDP的可拖动凸公式的第一步。
translated by 谷歌翻译
强化学习被广泛用于在与环境互动时需要执行顺序决策的应用中。当决策要求包括满足一些安全限制时,问题就变得更加具有挑战性。该问题在数学上是作为约束的马尔可夫决策过程(CMDP)提出的。在文献中,可以通过无模型的方式解决各种算法来解决CMDP问题,以实现$ \ epsilon $ - 最佳的累积奖励,并使用$ \ epsilon $可行的政策。 $ \ epsilon $可行的政策意味着它遭受了违规的限制。这里的一个重要问题是,我们是否可以实现$ \ epsilon $ - 最佳的累积奖励,并违反零约束。为此,我们主张使用随机原始偶对偶方法来解决CMDP问题,并提出保守的随机原始二重算法(CSPDA),该算法(CSPDA)显示出$ \ tilde {\ tilde {\ Mathcal {o}} \ left(1 /\ epsilon^2 \ right)$样本复杂性,以实现$ \ epsilon $ - 最佳累积奖励,违反零约束。在先前的工作中,$ \ epsilon $ - 最佳策略的最佳可用样本复杂性是零约束的策略是$ \ tilde {\ Mathcal {o}}} \ left(1/\ epsilon^5 \ right)$。因此,与最新技术相比,拟议的算法提供了重大改进。
translated by 谷歌翻译
Offline reinforcement learning (RL) concerns pursuing an optimal policy for sequential decision-making from a pre-collected dataset, without further interaction with the environment. Recent theoretical progress has focused on developing sample-efficient offline RL algorithms with various relaxed assumptions on data coverage and function approximators, especially to handle the case with excessively large state-action spaces. Among them, the framework based on the linear-programming (LP) reformulation of Markov decision processes has shown promise: it enables sample-efficient offline RL with function approximation, under only partial data coverage and realizability assumptions on the function classes, with favorable computational tractability. In this work, we revisit the LP framework for offline RL, and advance the existing results in several aspects, relaxing certain assumptions and achieving optimal statistical rates in terms of sample size. Our key enabler is to introduce proper constraints in the reformulation, instead of using any regularization as in the literature, sometimes also with careful choices of the function classes and initial state distributions. We hope our insights further advocate the study of the LP framework, as well as the induced primal-dual minimax optimization, in offline RL.
translated by 谷歌翻译
政策优化,通过大规模优化技术最大化价值函数来学习兴趣的政策,位于现代强化学习(RL)的核心。除了价值最大化之外,其他实际考虑因素也出现,包括令人鼓舞的探索,以及确保由于安全,资源和运营限制而确保学习政策的某些结构性。这些考虑通常可以通过诉诸正规化的RL来占据,这增加了目标值函数,并通过结构促进正则化术语。专注于无限范围打折马尔可夫决策过程,本文提出了一种用于解决正规化的RL的广义策略镜血压(GPMD)算法。作为策略镜血压LAN的概括(2021),所提出的算法可以容纳一般类凸常规的常规阶级,以及在使用中的规则器的认识到的广泛的Bregman分歧。我们展示了我们的算法在整个学习速率范围内,以无维的方式在全球解决方案的整个学习速率范围内融合到全球解决方案,即使常规器缺乏强大的凸起和平滑度。此外,在不精确的策略评估和不完美的政策更新方面,该线性收敛特征是可透明的。提供数值实验以证实GPMD的适用性和吸引力性能。
translated by 谷歌翻译
深度加强学习的最近成功的大部分是由正常化的政策优化(RPO)算法驱动,具有跨多个域的强大性能。在这家族的方法中,代理经过培训,以在惩罚某些引用或默认策略的行为中的偏差时最大化累积奖励。除了经验的成功外,还有一个强大的理论基础,了解应用于单一任务的RPO方法,与自然梯度,信任区域和变分方法有关。但是,对于多任务设置中的默认策略,对所需属性的正式理解有限,越来越重要的域作为现场转向培训更有能力的代理商。在这里,我们通过将默认策略的质量与其对优化的影响正式链接到其对其影响的效果方面,进行第一步才能填补这种差距。使用这些结果,我们将获得具有强大性能保证的多任务学习的原则性的RPO算法。
translated by 谷歌翻译
由熵正常化的马尔可夫决策过程(ER-MDP)产生的随机和软最佳政策是可取的探索和仿制学习应用程序的可取性。这种策略对国家过渡概率敏感的事实,并且这些概率的估计可能不准确,我们研究了ER-MDP模型的强大版本,其中随机最佳策略需要坚固尊重潜在的过渡概率中的歧义。我们的工作是加固学习(RL)的两个重要计划的十字路口,即强大的MDP和熵正则化MDP。我们表明,持有非强大的ER-MDP和强大的未反复化MDP型号的基本属性也在我们的设置中保持,使得强大的ER-MDP问题是易旧的。我们展示了我们的框架和结果如何集成到包括值或(修改)策略迭代的不同算法方案中,这将导致新的鲁棒RL和逆RL算法来处理不确定性。还提供了在传统的不确定性设置下计算复杂性和误差传播的分析。
translated by 谷歌翻译
本文涉及离线增强学习(RL)中模型鲁棒性和样本效率的核心问题,该问题旨在学习从没有主动探索的情况下从历史数据中执行决策。由于环境的不确定性和变异性,至关重要的是,学习强大的策略(尽可能少的样本),即使部署的环境偏离用于收集历史记录数据集的名义环境时,该策略也能很好地执行。我们考虑了离线RL的分布稳健公式,重点是标签非平稳的有限摩托稳健的马尔可夫决策过程,其不确定性设置为Kullback-Leibler Divergence。为了与样本稀缺作用,提出了一种基于模型的算法,该算法将分布强劲的价值迭代与面对不确定性时的悲观原理结合在一起,通过对稳健的价值估计值进行惩罚,以精心设计的数据驱动的惩罚项进行惩罚。在对历史数据集的轻度和量身定制的假设下,该数据集测量分布变化而不需要完全覆盖州行动空间,我们建立了所提出算法的有限样本复杂性,进一步表明,鉴于几乎无法改善的情况,匹配信息理论下限至地平线长度的多项式因素。据我们所知,这提供了第一个在模型不确定性和部分覆盖范围内学习的近乎最佳的稳健离线RL算法。
translated by 谷歌翻译
我们考虑了具有未知成本函数的大规模马尔可夫决策过程,并解决了从有限一套专家演示学习政策的问题。我们假设学习者不允许与专家互动,并且无法访问任何类型的加固信号。现有的逆钢筋学习方法具有强大的理论保证,但在计算上是昂贵的,而最先进的政策优化算法实现了重大的经验成功,但受到有限的理论理解受到阻碍。为了弥合理论与实践之间的差距,我们使用拉格朗日二元介绍了一种新的Bilinear鞍点框架。所提出的原始双视点允许我们通过随机凸优化的镜头开发出无模型可释放的算法。该方法享有实现,低内存要求和独立于州数量的计算和采样复杂性的优点。我们进一步提出了同等的无悔在线学习解释。
translated by 谷歌翻译
这项工作开发了具有严格效率的新算法,可确保无限的地平线模仿学习(IL)具有线性函数近似而无需限制性相干假设。我们从问题的最小值开始,然后概述如何从优化中利用经典工具,尤其是近端点方法(PPM)和双平滑性,分别用于在线和离线IL。多亏了PPM,我们避免了在以前的文献中出现在线IL的嵌套政策评估和成本更新。特别是,我们通过优化单个凸的优化和在成本和Q函数上的平稳目标来消除常规交替更新。当不确定地解决时,我们将优化错误与恢复策略的次级优势联系起来。作为额外的奖励,通过将PPM重新解释为双重平滑以专家政策为中心,我们还获得了一个离线IL IL算法,该算法在所需的专家轨迹方面享有理论保证。最后,我们实现了线性和神经网络功能近似的令人信服的经验性能。
translated by 谷歌翻译
In reinforcement learning (RL), the ability to utilize prior knowledge from previously solved tasks can allow agents to quickly solve new problems. In some cases, these new problems may be approximately solved by composing the solutions of previously solved primitive tasks (task composition). Otherwise, prior knowledge can be used to adjust the reward function for a new problem, in a way that leaves the optimal policy unchanged but enables quicker learning (reward shaping). In this work, we develop a general framework for reward shaping and task composition in entropy-regularized RL. To do so, we derive an exact relation connecting the optimal soft value functions for two entropy-regularized RL problems with different reward functions and dynamics. We show how the derived relation leads to a general result for reward shaping in entropy-regularized RL. We then generalize this approach to derive an exact relation connecting optimal value functions for the composition of multiple tasks in entropy-regularized RL. We validate these theoretical contributions with experiments showing that reward shaping and task composition lead to faster learning in various settings.
translated by 谷歌翻译
我们建议和分析一个强化学习原理,该原理仅在测试功能的用户定义空间沿使用它们的有效性来近似钟声方程。我们专注于使用功能近似的无模型离线RL应用程序,我们利用这一原理来得出置信区间以进行非政策评估,并在规定的策略类别中优化了对策略的优化。我们证明了关于我们的政策优化程序的甲骨文不平等,就任意比较策略的价值和不确定性之间的权衡而言。测试功能空间的不同选择使我们能够解决共同框架中的不同问题。我们表征了使用我们的程序从政策转移到政策数据的效率的丧失,并建立了与过去工作中研究的浓缩性系数的连接。我们深入研究了具有线性函数近似的方法的实施,即使贝尔曼关闭不结束,也可以通过多项式时间实现提供理论保证。
translated by 谷歌翻译
我们重新审视了最简单的设置之一中的政策梯度方法的有限时间分析:有限状态和动作MDP,具有由所有随机策略组成的策略类和精确的渐变评估。有一些最近的工作将此设置视为平滑的非线性优化问题的实例,并显示具有小阶梯大小的子线性收敛速率。在这里,我们根据与政策迭代的连接采取不同的透视,并显示政策梯度方法的许多变体成功,阶梯大小大,并达到了线性收敛速率。
translated by 谷歌翻译
安全的加强学习(RL)旨在学习在将其部署到关键安全应用程序中之前满足某些约束的政策。以前的原始双重风格方法遭受了不稳定性问题的困扰,并且缺乏最佳保证。本文从概率推断的角度克服了问题。我们在政策学习过程中介绍了一种新颖的期望最大化方法来自然纳入约束:1)在凸优化(E-step)后,可以以封闭形式计算可证明的最佳非参数变异分布; 2)基于最佳变异分布(M-step),在信任区域内改进了策略参数。提出的算法将安全的RL问题分解为凸优化阶段和监督学习阶段,从而产生了更稳定的培训性能。对连续机器人任务进行的广泛实验表明,所提出的方法比基线获得了更好的约束满意度和更好的样品效率。该代码可在https://github.com/liuzuxin/cvpo-safe-rl上找到。
translated by 谷歌翻译
离线目标条件的强化学习(GCRL)承诺以从纯粹的离线数据集实现各种目标的形式的通用技能学习。我们提出$ \ textbf {go} $ al-al-conditioned $ f $ - $ \ textbf {a} $ dvantage $ \ textbf {r} $ egression(gofar),这是一种基于新颖的回归gcrl gcrl algorithm,它源自州越来越多匹配的视角;关键的直觉是,可以将目标任务提出为守护动态的模仿者和直接传送到目标的专家代理之间的状态占用匹配问题。与先前的方法相反,Gofar不需要任何事后重新标签,并且对其价值和策略网络享有未融合的优化。这些独特的功能允许Gofar具有更好的离线性能和稳定性以及统计性能保证,这对于先前的方法无法实现。此外,我们证明了Gofar的训练目标可以重新使用,以从纯粹的离线源数据域数据中学习独立于代理的目标条件计划的计划者,这可以使零射击传输到新的目标域。通过广泛的实验,我们验证了Gofar在各种问题设置和任务中的有效性,显着超过了先前的先验。值得注意的是,在真正的机器人灵活性操纵任务上,虽然没有其他方法取得了有意义的进步,但Gofar获得了成功实现各种目标的复杂操纵行为。
translated by 谷歌翻译
我们研究具有多个奖励价值函数的马尔可夫决策过程(MDP)的政策优化,应根据给定的标准共同优化,例如比例公平(平滑凹面标量),硬约束(约束MDP)和Max-Min Trade-离开。我们提出了一个改变锚定的正规自然政策梯度(ARNPG)框架,该框架可以系统地将良好表现的一阶方法中的思想纳入多目标MDP问题的策略优化算法的设计。从理论上讲,基于ARNPG框架的设计算法实现了$ \ tilde {o}(1/t)$全局收敛,并具有精确的梯度。从经验上讲,与某些现有的基于策略梯度的方法相比,ARNPG引导的算法在精确梯度和基于样本的场景中也表现出卓越的性能。
translated by 谷歌翻译