我们在专家和学习者之间的过渡动力学下研究了逆钢筋学习(IRL)问题。具体而言,我们考虑最大因果熵(MCE)IRL学习者模型,并根据专家和学习者的转换动态之间的$ \ ell_1 $ -disce提供学习者的性能下降的紧密上限。利用强大的RL文献的洞察力,我们提出了一种强大的MCE IRL算法,这是一种有效的方法来帮助这种不匹配。最后,我们经验展示了我们算法的稳定性能,而在有限和连续的MDP问题中的转换动态不匹配下的标准MCE IRL算法相比。
translated by 谷歌翻译
诸如最大熵正则化之类的政策正则化方法被广泛用于增强学习以提高学习政策的鲁棒性。在本文中,我们展示了这种鲁棒性是如何通过对冲的奖励功能扰动而产生的,奖励功能是从想象中的对手设定的限制设置中选择的。使用凸双重性,我们表征了KL和Alpha-Divergence正则化的一组强大的对抗奖励扰动集,其中包括香农和Tsallis熵正则定期为特殊情况。重要的是,可以在此强大集合中给出概括保证。我们提供了有关最坏的奖励扰动的详细讨论,并提供了直观的经验示例,以说明这种稳健性及其与概括的关系。最后,我们讨论我们的分析如何补充并扩展对对抗奖励鲁棒性和路径一致性最佳条件的先前结果。
translated by 谷歌翻译
这项工作开发了具有严格效率的新算法,可确保无限的地平线模仿学习(IL)具有线性函数近似而无需限制性相干假设。我们从问题的最小值开始,然后概述如何从优化中利用经典工具,尤其是近端点方法(PPM)和双平滑性,分别用于在线和离线IL。多亏了PPM,我们避免了在以前的文献中出现在线IL的嵌套政策评估和成本更新。特别是,我们通过优化单个凸的优化和在成本和Q函数上的平稳目标来消除常规交替更新。当不确定地解决时,我们将优化错误与恢复策略的次级优势联系起来。作为额外的奖励,通过将PPM重新解释为双重平滑以专家政策为中心,我们还获得了一个离线IL IL算法,该算法在所需的专家轨迹方面享有理论保证。最后,我们实现了线性和神经网络功能近似的令人信服的经验性能。
translated by 谷歌翻译
在许多顺序决策问题(例如,机器人控制,游戏播放,顺序预测),人类或专家数据可用包含有关任务的有用信息。然而,来自少量专家数据的模仿学习(IL)可能在具有复杂动态的高维环境中具有挑战性。行为克隆是一种简单的方法,由于其简单的实现和稳定的收敛而被广泛使用,但不利用涉及环境动态的任何信息。由于对奖励和政策近似器或偏差,高方差梯度估计器,难以在实践中难以在实践中努力训练的许多现有方法。我们介绍了一种用于动态感知IL的方法,它通过学习单个Q函数来避免对抗训练,隐含地代表奖励和策略。在标准基准测试中,隐式学习的奖励显示与地面真实奖励的高正面相关性,说明我们的方法也可以用于逆钢筋学习(IRL)。我们的方法,逆软Q学习(IQ-Learn)获得了最先进的结果,在离线和在线模仿学习设置中,显着优于现有的现有方法,这些方法都在所需的环境交互和高维空间中的可扩展性中,通常超过3倍。
translated by 谷歌翻译
我们考虑了具有未知成本函数的大规模马尔可夫决策过程,并解决了从有限一套专家演示学习政策的问题。我们假设学习者不允许与专家互动,并且无法访问任何类型的加固信号。现有的逆钢筋学习方法具有强大的理论保证,但在计算上是昂贵的,而最先进的政策优化算法实现了重大的经验成功,但受到有限的理论理解受到阻碍。为了弥合理论与实践之间的差距,我们使用拉格朗日二元介绍了一种新的Bilinear鞍点框架。所提出的原始双视点允许我们通过随机凸优化的镜头开发出无模型可释放的算法。该方法享有实现,低内存要求和独立于州数量的计算和采样复杂性的优点。我们进一步提出了同等的无悔在线学习解释。
translated by 谷歌翻译
强化学习(RL)旨在在给定环境中从奖励功能中训练代理商,但逆增强学习(IRL)试图从观察专家的行为中恢复奖励功能。众所周知,总的来说,各种奖励功能会导致相同的最佳政策,因此,IRL定义不明。但是,(Cao等,2021)表明,如果我们观察到两个或多个具有不同折现因子或在不同环境中起作用的专家,则可以在某些条件下确定奖励功能,直至常数。这项工作首先根据等级条件显示了表格MDP的多位专家的等效可识别性声明,该声明易于验证,也被证明是必要的。然后,我们将结果扩展到各种不同的方案,即,在奖励函数可以表示为给定特征的线性组合,使其更容易解释,或者当我们可以访问近似过渡矩阵时,我们会表征奖励可识别性。即使奖励无法识别,我们也提供了特征的条件,当给定环境中的多个专家的数据允许在新环境中概括和训练最佳代理。在各种数值实验中,我们对奖励可识别性和概括性的理论结果得到了验证。
translated by 谷歌翻译
逆增强学习(IRL)是从专家演示中推断奖励功能的强大范式。许多IRL算法都需要已知的过渡模型,有时甚至是已知的专家政策,或者至少需要访问生成模型。但是,对于许多现实世界应用,这些假设太强了,在这些应用程序中,只能通过顺序相互作用访问环境。我们提出了一种新颖的IRL算法:逆增强学习(ACEIRL)的积极探索,该探索积极探索未知的环境和专家政策,以快速学习专家的奖励功能并确定良好的政策。 Aceirl使用以前的观察来构建置信区间,以捕获合理的奖励功能,并找到关注环境最有用区域的勘探政策。 Aceirl是使用样品复杂性界限的第一种活动IRL的方法,不需要环境的生成模型。在最坏情况下,Aceirl与活性IRL的样品复杂性与生成模型匹配。此外,我们建立了一个与问题相关的结合,该结合将Aceirl的样品复杂性与给定IRL问题的次级隔离间隙联系起来。我们在模拟中对Aceirl进行了经验评估,发现它的表现明显优于更幼稚的探索策略。
translated by 谷歌翻译
强化学习算法的实用性由于相对于问题大小的规模差而受到限制,因为学习$ \ epsilon $ -optimal策略的样本复杂性为$ \ tilde {\ omega} \ left(| s | s || a || a || a || a | h^3 / \ eps^2 \ right)$在MDP的最坏情况下,带有状态空间$ S $,ACTION SPACE $ A $和HORIZON $ H $。我们考虑一类显示出低级结构的MDP,其中潜在特征未知。我们认为,价值迭代和低级别矩阵估计的自然组合导致估计误差在地平线上呈指数增长。然后,我们提供了一种新算法以及统计保证,即有效利用了对生成模型的访问,实现了$ \ tilde {o} \ left的样本复杂度(d^5(d^5(| s |+| a |)\),我们有效利用低级结构。对于等级$ d $设置的Mathrm {Poly}(h)/\ EPS^2 \ right)$,相对于$ | s |,| a | $和$ \ eps $的缩放,这是最小值的最佳。与线性和低级别MDP的文献相反,我们不需要已知的功能映射,我们的算法在计算上很简单,并且我们的结果长期存在。我们的结果提供了有关MDP对过渡内核与最佳动作值函数所需的最小低级结构假设的见解。
translated by 谷歌翻译
我们提出了状态匹配的离线分布校正估计(SMODICE),这是一种新颖且基于多功能回归的离线模仿学习(IL)算法,该算法是通过状态占用匹配得出的。我们表明,SMODICE目标通过在表格MDP中的Fenchel二元性和一个分析解决方案的应用来接受一个简单的优化过程。不需要访问专家的行动,可以将Smodice有效地应用于三个离线IL设置:(i)模仿观察值(IFO),(ii)IFO具有动态或形态上不匹配的专家,以及(iii)基于示例的加固学习,这些学习我们表明可以将其公式为州占领的匹配问题。我们在GridWorld环境以及高维离线基准上广泛评估了Smodice。我们的结果表明,Smodice对于所有三个问题设置都有效,并且在前最新情况下均明显胜过。
translated by 谷歌翻译
由熵正常化的马尔可夫决策过程(ER-MDP)产生的随机和软最佳政策是可取的探索和仿制学习应用程序的可取性。这种策略对国家过渡概率敏感的事实,并且这些概率的估计可能不准确,我们研究了ER-MDP模型的强大版本,其中随机最佳策略需要坚固尊重潜在的过渡概率中的歧义。我们的工作是加固学习(RL)的两个重要计划的十字路口,即强大的MDP和熵正则化MDP。我们表明,持有非强大的ER-MDP和强大的未反复化MDP型号的基本属性也在我们的设置中保持,使得强大的ER-MDP问题是易旧的。我们展示了我们的框架和结果如何集成到包括值或(修改)策略迭代的不同算法方案中,这将导致新的鲁棒RL和逆RL算法来处理不确定性。还提供了在传统的不确定性设置下计算复杂性和误差传播的分析。
translated by 谷歌翻译
策略梯度方法适用于复杂的,不理解的,通过对参数化的策略进行随机梯度下降来控制问题。不幸的是,即使对于可以通过标准动态编程技术解决的简单控制问题,策略梯度算法也会面临非凸优化问题,并且被广泛理解为仅收敛到固定点。这项工作确定了结构属性 - 通过几个经典控制问题共享 - 确保策略梯度目标函数尽管是非凸面,但没有次优的固定点。当这些条件得到加强时,该目标满足了产生收敛速率的Polyak-lojasiewicz(梯度优势)条件。当其中一些条件放松时,我们还可以在任何固定点的最佳差距上提供界限。
translated by 谷歌翻译
在阻碍强化学习(RL)到现实世界中的问题的原因之一,两个因素至关重要:与培训相比,数据有限和测试环境的不匹配。在本文中,我们试图通过分配强大的离线RL的问题同时解决这些问题。特别是,我们学习了一个从源环境中获得的历史数据,并优化了RL代理,并在扰动的环境中表现良好。此外,我们考虑将算法应用于大规模问题的线性函数近似。我们证明我们的算法可以实现$ O(1/\ sqrt {k})$的次级临时性,具体取决于线性函数尺寸$ d $,这似乎是在此设置中使用样品复杂性保证的第一个结果。进行了不同的实验以证明我们的理论发现,显示了我们算法与非持bust算法的优越性。
translated by 谷歌翻译
本文涉及离线增强学习(RL)中模型鲁棒性和样本效率的核心问题,该问题旨在学习从没有主动探索的情况下从历史数据中执行决策。由于环境的不确定性和变异性,至关重要的是,学习强大的策略(尽可能少的样本),即使部署的环境偏离用于收集历史记录数据集的名义环境时,该策略也能很好地执行。我们考虑了离线RL的分布稳健公式,重点是标签非平稳的有限摩托稳健的马尔可夫决策过程,其不确定性设置为Kullback-Leibler Divergence。为了与样本稀缺作用,提出了一种基于模型的算法,该算法将分布强劲的价值迭代与面对不确定性时的悲观原理结合在一起,通过对稳健的价值估计值进行惩罚,以精心设计的数据驱动的惩罚项进行惩罚。在对历史数据集的轻度和量身定制的假设下,该数据集测量分布变化而不需要完全覆盖州行动空间,我们建立了所提出算法的有限样本复杂性,进一步表明,鉴于几乎无法改善的情况,匹配信息理论下限至地平线长度的多项式因素。据我们所知,这提供了第一个在模型不确定性和部分覆盖范围内学习的近乎最佳的稳健离线RL算法。
translated by 谷歌翻译
尽管在理解增强学习的最小样本复杂性(RL)(在“最坏情况”的实例上学习的复杂性)方面已经取得了很多进展,但这种复杂性的衡量标准通常不会捕捉到真正的学习困难。在实践中,在“简单”的情况下,我们可能希望获得比最糟糕的实例可以实现的要好得多。在这项工作中,我们试图理解在具有线性函数近似的RL设置中学习近乎最佳策略(PAC RL)的“实例依赖性”复杂性。我们提出了一种算法,\ textsc {pedel},该算法实现了依赖于实例的复杂性的量度,这是RL中的第一个具有功能近似设置,从而捕获了每个特定问题实例的学习难度。通过一个明确的示例,我们表明\ textsc {pedel}可以在低重晶,最小值 - 最佳算法上获得可证明的收益,并且这种算法无法达到实例 - 最佳速率。我们的方法取决于基于设计的新型实验程序,该程序将勘探预算重点放在与学习近乎最佳政策最相关的“方向”上,并且可能具有独立的兴趣。
translated by 谷歌翻译
最大化马尔可夫和固定的累积奖励函数,即在国家行动对和时间独立于时间上定义,足以在马尔可夫决策过程(MDP)中捕获多种目标。但是,并非所有目标都可以以这种方式捕获。在本文中,我们研究了凸MDP,其中目标表示为固定分布的凸功能,并表明它们不能使用固定奖励函数进行配制。凸MDP将标准加强学习(RL)问题提出概括为一个更大的框架,其中包括许多受监督和无监督的RL问题,例如学徒学习,约束MDP和所谓的“纯探索”。我们的方法是使用Fenchel二重性将凸MDP问题重新将凸MDP问题重新制定为涉及政策和成本(负奖励)的最小游戏。我们提出了一个用于解决此问题的元偏金属,并表明它统一了文献中许多现有的算法。
translated by 谷歌翻译
在学徒学习(AL)中,我们在没有获得成本函数的情况下给予马尔可夫决策过程(MDP)。相反,我们观察由根据某些政策执行的专家采样的轨迹。目标是找到一个与专家对某些预定义的成本函数的性能相匹配的策略。我们介绍了AL的在线变体(在线学徒学习; OAL),其中代理商预计与环境相互作用,在与环境互动的同时相互表现。我们表明,通过组合两名镜面血缘无遗憾的算法可以有效地解决了OAL问题:一个用于策略优化,另一个用于学习最坏情况的成本。通过采用乐观的探索,我们使用$ O(\ SQRT {k})$后悔派生算法,其中$ k $是与MDP的交互数量以及额外的线性错误术语,其取决于专家轨迹的数量可用的。重要的是,我们的算法避免了在每次迭代时求解MDP的需要,与先前的AL方法相比,更实用。最后,我们实现了我们算法的深层变体,该算法与Gail \ Cite {Ho2016Generative}共享了一些相似之处,但在鉴别者被替换为OAL问题的成本。我们的模拟表明OAL在高维控制问题中表现良好。
translated by 谷歌翻译
在本文中,我们提出了一个健壮的模仿学习(IL)框架,该框架在扰动环境动态时改善了IL的稳健性。在单个环境中训练的现有IL框架可能会因环境动力学的扰动而灾难性地失败,因为它无法捕获可以更改潜在环境动态的情况。我们的框架有效地处理了具有不同动态的环境,通过模仿了采样环境动力学中的多个专家,以增强环境动力学的一般变化中的鲁棒性。为了强力模仿多个样本专家,我们将代理商政策与每个样本专家之间的Jensen-Shannon分歧降低了风险。数值结果表明,与常规IL基准相比,我们的算法显着提高了针对动力学扰动的鲁棒性。
translated by 谷歌翻译
Effectively leveraging large, previously collected datasets in reinforcement learning (RL) is a key challenge for large-scale real-world applications. Offline RL algorithms promise to learn effective policies from previously-collected, static datasets without further interaction. However, in practice, offline RL presents a major challenge, and standard off-policy RL methods can fail due to overestimation of values induced by the distributional shift between the dataset and the learned policy, especially when training on complex and multi-modal data distributions. In this paper, we propose conservative Q-learning (CQL), which aims to address these limitations by learning a conservative Q-function such that the expected value of a policy under this Q-function lower-bounds its true value. We theoretically show that CQL produces a lower bound on the value of the current policy and that it can be incorporated into a policy learning procedure with theoretical improvement guarantees. In practice, CQL augments the standard Bellman error objective with a simple Q-value regularizer which is straightforward to implement on top of existing deep Q-learning and actor-critic implementations. On both discrete and continuous control domains, we show that CQL substantially outperforms existing offline RL methods, often learning policies that attain 2-5 times higher final return, especially when learning from complex and multi-modal data distributions.Preprint. Under review.
translated by 谷歌翻译
非政策评估(OPE)方法是评估高风险领域(例如医疗保健)中的政策的关键工具,在这些领域,直接部署通常是不可行的,不道德的或昂贵的。当期望部署环境发生变化(即数据集偏移)时,对于OPE方法,在此类更改中对策略进行强大的评估非常重要。现有的方法考虑对可以任意改变环境的任何可观察到的任何可观察到的属性的大量转变。这通常会导致对公用事业的高度悲观估计,从而使可能对部署有用的政策无效。在这项工作中,我们通过研究领域知识如何帮助提供对政策公用事业的更现实的估计来解决上述问题。我们利用人类的投入,在环境的哪些方面可能会发生变化,并适应OPE方法仅考虑这些方面的转变。具体而言,我们提出了一个新颖的框架,可靠的OPE(绳索),该框架认为基于用户输入的数据中的协变量子集,并估算了这些变化下最坏情况的效用。然后,我们为OPE开发了对OPE的计算有效算法,这些算法对上述强盗和马尔可夫决策过程的上述变化很强。我们还理论上分析了这些算法的样品复杂性。从医疗领域进行的合成和现实世界数据集进行了广泛的实验表明,我们的方法不仅可以捕获现实的数据集准确地转移,而且还会导致较少的悲观政策评估。
translated by 谷歌翻译
使用悲观,推理缺乏详尽的勘探数据集时的脱机强化学习最近颇具知名度。尽管它增加了算法的鲁棒性,过于悲观的推理可以在排除利好政策的发现,这是流行的基于红利悲观的问题同样有害。在本文中,我们介绍一般函数近似的Bellman-一致悲观的概念:不是计算逐点下界的值的功能,我们在超过设定的与贝尔曼方程一致的功能的初始状态实现悲观。我们的理论保证只需要贝尔曼封闭性作为探索性的设置标准,其中基于奖金的情况下的悲观情绪未能提供担保。即使在线性函数逼近的特殊情况下更强的表现力假设成立,我们的结果由$ \ mathcal {}Ø(d)在其样品的复杂$在最近的基于奖金的方法改善的时候,动作的空间是有限的。值得注意的是,我们的算法,能够自动适应事后最好的偏差 - 方差折中,而大多数现有的方法中需要调整的额外超参数的先验。
translated by 谷歌翻译