我们与指定为领导者的球员之一和其他球员读为追随者的球员学习多人一般汇总马尔可夫游戏。特别是,我们专注于追随者是近视的游戏,即,他们的目标是最大限度地提高他们的瞬间奖励。对于这样的游戏,我们的目标是找到一个Stackelberg-Nash均衡(SNE),这是一个策略对$(\ pi ^ *,\ nu ^ *)$,这样(i)$ \ pi ^ * $是追随者始终发挥最佳回应的领导者的最佳政策,(ii)$ \ nu ^ * $是追随者的最佳反应政策,这是由$ \ pi ^ *引起的追随者游戏的纳什均衡$。我们开发了用于在线和离线设置中的SNE解决SNE的采样高效的强化学习(RL)算法。我们的算法是最小二乘值迭代的乐观和悲观的变体,并且它们很容易能够在大状态空间的设置中结合函数近似工具。此外,对于线性函数近似的情况,我们证明我们的算法分别在线和离线设置下实现了Sublinear遗憾和次优。据我们所知,我们建立了第一种可用于解决近代Markov游戏的SNES的第一款可透明的RL算法。
translated by 谷歌翻译