The offline reinforcement learning (RL) problem is often motivated by the need to learn data-driven decision policies in financial, legal and healthcare applications. However, the learned policy could retain sensitive information of individuals in the training data (e.g., treatment and outcome of patients), thus susceptible to various privacy risks. We design offline RL algorithms with differential privacy guarantees which provably prevent such risks. These algorithms also enjoy strong instance-dependent learning bounds under both tabular and linear Markov decision process (MDP) settings. Our theory and simulation suggest that the privacy guarantee comes at (almost) no drop in utility comparing to the non-private counterpart for a medium-size dataset.
translated by 谷歌翻译
Motivated by personalized healthcare and other applications involving sensitive data, we study online exploration in reinforcement learning with differential privacy (DP) constraints. Existing work on this problem established that no-regret learning is possible under joint differential privacy (JDP) and local differential privacy (LDP) but did not provide an algorithm with optimal regret. We close this gap for the JDP case by designing an $\epsilon$-JDP algorithm with a regret of $\widetilde{O}(\sqrt{SAH^2T}+S^2AH^3/\epsilon)$ which matches the information-theoretic lower bound of non-private learning for all choices of $\epsilon> S^{1.5}A^{0.5} H^2/\sqrt{T}$. In the above, $S$, $A$ denote the number of states and actions, $H$ denotes the planning horizon, and $T$ is the number of steps. To the best of our knowledge, this is the first private RL algorithm that achieves \emph{privacy for free} asymptotically as $T\rightarrow \infty$. Our techniques -- which could be of independent interest -- include privately releasing Bernstein-type exploration bonuses and an improved method for releasing visitation statistics. The same techniques also imply a slightly improved regret bound for the LDP case.
translated by 谷歌翻译
在差异隐私(DP)的约束下,我们在有限地域表格马尔可夫决策过程(MDP)中研究了遗憾最小化。这是由强化学习(RL)在现实世界顺序决策中的广泛应用程序的推动,保护用户敏感和私人信息变得最大程度。我们考虑了两种DP - 关节DP(JDP)的变体,其中集中式代理负责保护用户的敏感数据和本地DP(LDP),其中需要直接在用户端保护信息。我们首先提出了两个一般框架 - 一个用于策略优化,另一个用于迭代 - 用于设计私有,乐观的RL算法。然后,我们将这些框架实例化了合适的隐私机制来满足JDP和LDP要求,并同时获得Sublinear遗憾担保。遗憾的界限表明,在JDP下,隐私费用只是较低的秩序添加剂项,而在LDP下,对于更强的隐私保护,遭受的成本是乘法的。最后,通过统一的分析获得了遗憾范围,我们相信,我们相信,可以超出表格MDP。
translated by 谷歌翻译
以目标为导向的强化学习,代理商需要达到目标状态,同时将成本降至最低,在现实世界应用中受到了极大的关注。它的理论配方是随机最短路径(SSP),在在线环境中进行了深入研究。然而,当禁止使用这种在线互动并且仅提供历史数据时,它仍然被忽略了。在本文中,当状态空间和动作空间有限时,我们考虑离线随机路径问题。我们设计了基于简单的价值迭代算法,以解决离线政策评估(OPE)和离线政策学习任务。值得注意的是,我们对这些简单算法的分析产生了强大的实例依赖性边界,这可能意味着接近最佳的最佳范围最佳范围。我们希望我们的研究能够帮助阐明离线SSP问题的基本统计限制,并激发超出当前考虑范围的进一步研究。
translated by 谷歌翻译
我们研究了用线性函数近似的加固学习中的违规评估(OPE)问题,旨在根据行为策略收集的脱机数据来估计目标策略的价值函数。我们建议纳入价值函数的方差信息以提高ope的样本效率。更具体地说,对于时间不均匀的epiSodic线性马尔可夫决策过程(MDP),我们提出了一种算法VA-OPE,它使用价值函数的估计方差重新重量拟合Q迭代中的Bellman残差。我们表明我们的算法达到了比最着名的结果绑定的更紧密的误差。我们还提供了行为政策与目标政策之间的分布转移的细粒度。广泛的数值实验证实了我们的理论。
translated by 谷歌翻译
We study time-inhomogeneous episodic reinforcement learning (RL) under general function approximation and sparse rewards. We design a new algorithm, Variance-weighted Optimistic $Q$-Learning (VO$Q$L), based on $Q$-learning and bound its regret assuming completeness and bounded Eluder dimension for the regression function class. As a special case, VO$Q$L achieves $\tilde{O}(d\sqrt{HT}+d^6H^{5})$ regret over $T$ episodes for a horizon $H$ MDP under ($d$-dimensional) linear function approximation, which is asymptotically optimal. Our algorithm incorporates weighted regression-based upper and lower bounds on the optimal value function to obtain this improved regret. The algorithm is computationally efficient given a regression oracle over the function class, making this the first computationally tractable and statistically optimal approach for linear MDPs.
translated by 谷歌翻译
本文介绍了一项有关离线增强学习中依赖间隙依赖样品复杂性的系统研究。先前的工作显示了何时最佳策略和行为策略之间的密度比上限(最佳策略覆盖范围假设),则代理可以实现$ o \ left(\ frac {1} {\ epsilon^2} \ right)$ rate,这也是最小值的最佳。我们在最佳策略覆盖范围假设下显示,当在最佳$ q $ unction中存在积极的子临时差距时,可以将费率提高到$ o \ left(\ frac {1} {\ epsilon} \ right)$。。此外,我们显示了行为策略的访问概率何时在最佳策略的访问概率为正(统一的最佳策略覆盖范围假设)的状态下,均匀下降,识别最佳政策的样本复杂性独立于$ \ frac {1} {\ epsilon} $。最后,我们呈现几乎匹配的下限,以补充我们的间隙依赖性上限。
translated by 谷歌翻译
我们研究了具有线性函数近似增强学习中的随机最短路径(SSP)问题,其中过渡内核表示为未知模型的线性混合物。我们将此类别的SSP问题称为线性混合物SSP。我们提出了一种具有Hoeffding-type置信度的新型算法,用于学习线性混合物SSP,可以获得$ \ tilde {\ Mathcal {o}}}}(d B _ {\ star}^{1.5} \ sqrt {k/c_ {k/c_ {k/c_ {k/c_ { \ min}})$遗憾。这里$ k $是情节的数量,$ d $是混合模型中功能映射的维度,$ b _ {\ star} $限制了最佳策略的预期累积成本,$ c _ {\ min}>> 0 $是成本函数的下限。当$ c _ {\ min} = 0 $和$ \ tilde {\ mathcal {o}}}(k^{2/3})$遗憾时,我们的算法也适用于情况。据我们所知,这是第一个具有sublrinear遗憾保证线性混合物SSP的算法。此外,我们设计了精致的伯恩斯坦型信心集并提出了改进的算法,该算法可实现$ \ tilde {\ Mathcal {o}}}(d b _ {\ star} \ sqrt {k/c/c/c {k/c _ {\ min}}) $遗憾。为了补充遗憾的上限,我们还证明了$ \ omega(db _ {\ star} \ sqrt {k})$的下限。因此,我们的改进算法将下限匹配到$ 1/\ sqrt {c _ {\ min}} $ factor和poly-logarithmic因素,从而实现了近乎最佳的遗憾保证。
translated by 谷歌翻译
我们研究依靠敏感数据(例如医疗记录)的环境的顺序决策中,研究隐私的探索。特别是,我们专注于解决在线性MDP设置中受(联合)差异隐私的约束的增强学习问题(RL),在该设置中,动态和奖励均由线性函数给出。由于Luyo等人而引起的此问题的事先工作。 (2021)实现了$ o(k^{3/5})$的依赖性的遗憾率。我们提供了一种私人算法,其遗憾率提高,最佳依赖性为$ o(\ sqrt {k})$对情节数量。我们强烈遗憾保证的关键配方是策略更新时间表中的适应性,其中仅在检测到数据足够更改时才发生更新。结果,我们的算法受益于低切换成本,并且仅执行$ o(\ log(k))$更新,这大大降低了隐私噪声的量。最后,在最普遍的隐私制度中,隐私参数$ \ epsilon $是一个常数,我们的算法会造成可忽略不计的隐私成本 - 与现有的非私人遗憾界限相比,由于隐私而引起的额外遗憾在低阶中出现了术语。
translated by 谷歌翻译
We study reinforcement learning (RL) with linear function approximation. For episodic time-inhomogeneous linear Markov decision processes (linear MDPs) whose transition dynamic can be parameterized as a linear function of a given feature mapping, we propose the first computationally efficient algorithm that achieves the nearly minimax optimal regret $\tilde O(d\sqrt{H^3K})$, where $d$ is the dimension of the feature mapping, $H$ is the planning horizon, and $K$ is the number of episodes. Our algorithm is based on a weighted linear regression scheme with a carefully designed weight, which depends on a new variance estimator that (1) directly estimates the variance of the \emph{optimal} value function, (2) monotonically decreases with respect to the number of episodes to ensure a better estimation accuracy, and (3) uses a rare-switching policy to update the value function estimator to control the complexity of the estimated value function class. Our work provides a complete answer to optimal RL with linear MDPs, and the developed algorithm and theoretical tools may be of independent interest.
translated by 谷歌翻译
我们在面对未衡量的混杂因素时研究离线增强学习(RL)。由于缺乏与环境的在线互动,离线RL面临以下两个重大挑战:(i)代理可能会被未观察到的状态变量混淆; (ii)提前收集的离线数据不能为环境提供足够的覆盖范围。为了应对上述挑战,我们借助工具变量研究了混杂的MDP中的政策学习。具体而言,我们首先建立了基于和边缘化的重要性采样(MIS)的识别结果,以确定混杂的MDP中的预期总奖励结果。然后,通过利用悲观主义和我们的认同结果,我们提出了各种政策学习方法,并具有有限样本的次级临时性保证,可以在最小的数据覆盖范围和建模假设下找到最佳的课堂政策。最后,我们广泛的理论研究和一项由肾脏移植动机的数值研究证明了该方法的有希望的表现。
translated by 谷歌翻译
我们在加固学习中使用汤普森采样(TS) - 样算法中的随机价值函数研究探索。这种类型的算法享有有吸引力的经验性能。我们展示当我们使用1)每一集中的单个随机种子,而2)伯尼斯坦型噪声幅度,我们获得了最坏的情况$ \ widetilde {o}左(h \ sqrt {sat} \右)$遗憾绑定了焦点时间 - 不均匀的马尔可夫决策过程,其中$ S $是国家空间的大小,$ a $的是行动空间的大小,$ h $是规划地平线,$ t $是互动的数量。这种绑定的多项式基于随机值函数的TS样算法的所有现有界限,并且首次匹配$ \ Omega \左(H \ SQRT {SAT}右)$下限到对数因子。我们的结果强调随机勘探可以近乎最佳,这是以前仅通过乐观算法实现的。为了实现所需的结果,我们开发1)新的剪辑操作,以确保持续持续的概率和悲观的概率是较低的常数,并且2)用于分析估计误差的绝对值的新递归公式。后悔。
translated by 谷歌翻译
尽管基于模型的增强学习(RL)方法被认为是更具样本的高效,但现有算法通常依赖于复杂的规划算法与模型学习过程紧密粘合。因此,学习模型可能缺乏与更专业规划者重新使用的能力。在本文中,我们解决了这个问题,并提供了在没有奖励信号的指导的情况下有效地学习RL模型的方法。特别是,我们采取了一个插件求解器方法,我们专注于在探索阶段学习模型,并要求在学习模型上的\ emph {任何规划算法}可以给出近最佳的政策。具体而言,我们专注于线性混合MDP设置,其中概率转换矩阵是一组现有模型的(未知)凸面组合。我们表明,通过建立新的探索算法,即插即用通过\ tilde {o}来学习模型(d ^ 2h ^ 3 / epsilon ^ 2)$与环境交互,\ emph {任何} $ \ epsilon $ -optimal Planner在模型上给出$ O(\ epsilon)$ - 原始模型上的最佳政策。此示例复杂性与非插入方法的下限与下限匹配,并且是\ EMPH {统计上最佳}。我们通过利用使用伯尔斯坦不等式和指定的线性混合MDP的属性来实现仔细的最大总差异来实现这一结果。
translated by 谷歌翻译
我们研究了基于模型的无奖励加强学习,具有ePiSodic Markov决策过程的线性函数近似(MDP)。在此设置中,代理在两个阶段工作。在勘探阶段,代理商与环境相互作用并在没有奖励的情况下收集样品。在规划阶段,代理商给出了特定的奖励功能,并使用从勘探阶段收集的样品来学习良好的政策。我们提出了一种新的可直接有效的算法,称为UCRL-RFE在线性混合MDP假设,其中MDP的转换概率内核可以通过线性函数参数化,在状态,动作和下一个状态的三联体上定义的某些特征映射上参数化。我们展示了获得$ \ epsilon $-Optimal策略进行任意奖励函数,Ucrl-RFE需要以大多数$ \ tilde {\ mathcal {o}}来进行采样(h ^ 5d ^ 2 \ epsilon ^ { - 2})勘探阶段期间的$派对。在这里,$ H $是集的长度,$ d $是特征映射的尺寸。我们还使用Bernstein型奖金提出了一种UCRL-RFE的变种,并表明它需要在大多数$ \ TINDE {\ MATHCAL {o}}(H ^ 4D(H + D)\ epsilon ^ { - 2})进行样本$达到$ \ epsilon $ -optimal政策。通过构建特殊类的线性混合MDPS,我们还证明了对于任何无奖励算法,它需要至少为$ \ TINDE \ OMEGA(H ^ 2d \ epsilon ^ { - 2})$剧集来获取$ \ epsilon $ -optimal政策。我们的上限与依赖于$ \ epsilon $的依赖性和$ d $ if $ h \ ge d $。
translated by 谷歌翻译
强化学习(RL)的显着成功在很大程度上依赖于观察每个访问的州行动对的奖励。但是,在许多现实世界应用中,代理只能观察一个代表整个轨迹质量的分数,该分数称为{\ em轨迹方面的奖励}。在这种情况下,标准RL方法很难很好地利用轨迹的奖励,并且在政策评估中可能会产生巨大的偏见和方差错误。在这项工作中,我们提出了一种新颖的离线RL算法,称为悲观的价值迭代,奖励分解(分开),该算法将轨迹返回分解为每个步骤代理奖励,通过基于最小二乘的奖励重新分配,然后执行基于基于基于基于基于的价值迭代的迭代价值迭代的迭代迭代率关于博学的代理奖励。为了确保由分开构建的价值功能对最佳函数始终是悲观的,我们设计了一个新的罚款术语来抵消代理奖励的不确定性。对于具有较大状态空间的一般情节MDP,我们表明与过度参数化的神经网络函数近似近似能够实现$ \ tilde {\ Mathcal {o}}}(d _ {\ text {eff}}} h^2/\ sqrt {n}) $ suboftimality,其中$ h $是情节的长度,$ n $是样本总数,而$ d _ {\ text {eff}} $是神经切线核矩阵的有效维度。为了进一步说明结果,我们表明分开实现了$ \ tilde {\ mathcal {o}}}(dh^3/\ sqrt {n})$ subiptimation fi linearem mdps,其中$ d $是特征尺寸,匹配功能维度使用神经网络功能近似,当$ d _ {\ text {eff}} = dh $时。据我们所知,分开是第一种离线RL算法,在MDP总体上,轨迹奖励的效率非常有效。
translated by 谷歌翻译
本文研究了Markov决策过程(MDP)的隐私保留探索,线性表示。我们首先考虑线性混合MDP(Ayoub等,2020)(A.K.A.基于模型的设置)的设置,并提供统一的框架,用于分析关节和局部差异私有(DP)探索。通过这个框架,我们证明了一个$ \ widetilde {o}(k ^ {3/4} / \ sqrt {\ epsilon})$遗憾绑定$(\ epsilon,\ delta)$ - 本地DP探索和$ \widetilde {o}(\ sqrt {k / \ epsilon})$后悔绑定$(\ epsilon,\ delta)$ - 联合dp。我们进一步研究了Linear MDP中的隐私保留探索(Jin等,2020)(AKA \ Forws-Free Setting),我们提供$ \ widetilde {o}(\ sqrt {k / \ epsilon})$后悔绑定$(\ epsilon,\ delta)$ - 关节dp,具有基于低切换的新型算法。最后,我们提供了在这种无模型设置中设计本地DP算法的问题的见解。
translated by 谷歌翻译
获取一阶遗憾界限 - 遗憾的界限不是作为最坏情况,但有一些衡量给定实例的最佳政策的性能 - 是连续决策的核心问题。虽然这种界限存在于许多设置中,但它们在具有大状态空间的钢筋学习中被证明是难以捉摸的。在这项工作中,我们解决了这个差距,并表明可以将遗憾的缩放作为$ \ mathcal {o}(\ sqrt {v_1 ^ \ star})$中的钢筋学习,即用大状态空间,即线性MDP设置。这里$ v_1 ^ \ star $是最佳政策的价值,$ k $是剧集的数量。我们证明基于最小二乘估计的现有技术不足以获得该结果,而是基于强大的Catoni平均估计器制定一种新的稳健自归一化浓度,其可能具有独立兴趣。
translated by 谷歌翻译
在阻碍强化学习(RL)到现实世界中的问题的原因之一,两个因素至关重要:与培训相比,数据有限和测试环境的不匹配。在本文中,我们试图通过分配强大的离线RL的问题同时解决这些问题。特别是,我们学习了一个从源环境中获得的历史数据,并优化了RL代理,并在扰动的环境中表现良好。此外,我们考虑将算法应用于大规模问题的线性函数近似。我们证明我们的算法可以实现$ O(1/\ sqrt {k})$的次级临时性,具体取决于线性函数尺寸$ d $,这似乎是在此设置中使用样品复杂性保证的第一个结果。进行了不同的实验以证明我们的理论发现,显示了我们算法与非持bust算法的优越性。
translated by 谷歌翻译
我们考虑在离线增强学习中有一个具有挑战性的理论问题(RL):仅在功能近似器的可靠性型假设下,通过缺乏足够覆盖的数据集获得样本效率保证。尽管现有的理论已经在可实现性和非探索数据下分别解决了学习,但没有工作能够同时解决这两者(除了我们对详细比较的并发工作除外)。在额外的差距假设下,我们根据边缘化重要性采样(MIS)形成的版本空间(MIS)为简单的悲观算法提供保证,并且保证只需要数据来涵盖最佳策略和功能类,以实现最佳价值和最佳价值和密度比函数。尽管在RL理论的其他领域中使用了类似的差距假设,但我们的工作是第一个识别离线RL中差距假设的实用性和新型机制,其功能近似较弱。
translated by 谷歌翻译
我们介绍了一种普遍的策略,可实现有效的多目标勘探。它依赖于adagoal,一种基于简单约束优化问题的新的目标选择方案,其自适应地针对目标状态,这既不是太困难也不是根据代理目前的知识达到的。我们展示了Adagoal如何用于解决学习$ \ epsilon $ -optimal的目标条件的政策,以便在$ L $ S_0 $ S_0 $奖励中获得的每一个目标状态,以便在$ S_0 $中获取。免费马尔可夫决策过程。在标准的表格外壳中,我们的算法需要$ \ tilde {o}(l ^ 3 s a \ epsilon ^ { - 2})$探索步骤,这几乎很少最佳。我们还容易在线性混合Markov决策过程中实例化Adagoal,其产生具有线性函数近似的第一目标导向的PAC保证。除了强大的理论保证之外,迈克纳队以现有方法的高级别算法结构为锚定,为目标条件的深度加固学习。
translated by 谷歌翻译