卷积神经网络(CNNS)非常有效,因为它们利用自然图像的固有转换不变性。但是,翻译只是无数的有用空间转换之一。在考虑其他空间的侵犯侵犯性时可以获得相同的效率吗?过去已经考虑过这种广义综合,但以高计算成本为例。我们展示了一个简单和精确的建筑,但标准卷积具有相同的计算复杂性。它由一个恒定的图像扭曲,后跟一个简单的卷积,这是深度学习工具箱中的标准块。通过精心制作的经线,所产生的架构可以使成功的架构成为各种各样的双参数空间转换。我们展示了令人鼓舞的现实情景结果,包括谷歌地球数据集(旋转和缩放)中车辆姿势的估计,并且面部在野外注释的面部地标中的面部姿势(在透视下的3D旋转)。
translated by 谷歌翻译
We introduce Group equivariant Convolutional Neural Networks (G-CNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symmetries. G-CNNs use G-convolutions, a new type of layer that enjoys a substantially higher degree of weight sharing than regular convolution layers. G-convolutions increase the expressive capacity of the network without increasing the number of parameters. Group convolution layers are easy to use and can be implemented with negligible computational overhead for discrete groups generated by translations, reflections and rotations. G-CNNs achieve state of the art results on CI-FAR10 and rotated MNIST.
translated by 谷歌翻译
The principle of equivariance to symmetry transformations enables a theoretically grounded approach to neural network architecture design. Equivariant networks have shown excellent performance and data efficiency on vision and medical imaging problems that exhibit symmetries. Here we show how this principle can be extended beyond global symmetries to local gauge transformations. This enables the development of a very general class of convolutional neural networks on manifolds that depend only on the intrinsic geometry, and which includes many popular methods from equivariant and geometric deep learning.We implement gauge equivariant CNNs for signals defined on the surface of the icosahedron, which provides a reasonable approximation of the sphere. By choosing to work with this very regular manifold, we are able to implement the gauge equivariant convolution using a single conv2d call, making it a highly scalable and practical alternative to Spherical CNNs. Using this method, we demonstrate substantial improvements over previous methods on the task of segmenting omnidirectional images and global climate patterns.
translated by 谷歌翻译
由于其在翻译下的增强/不变性,卷积网络成功。然而,在坐标系的旋转取向不会影响数据的含义(例如对象分类)的情况下,诸如图像,卷,形状或点云的可旋转数据需要在旋转下的增强/不变性处理。另一方面,在旋转很重要的情况下是必要的估计/处理旋转(例如运动估计)。最近在所有这些方面的方法和理论方面取得了进展。在这里,我们提供了2D和3D旋转(以及翻译)的现有方法的概述,以及识别它们之间的共性和链接。
translated by 谷歌翻译
Translating or rotating an input image should not affect the results of many computer vision tasks. Convolutional neural networks (CNNs) are already translation equivariant: input image translations produce proportionate feature map translations. This is not the case for rotations. Global rotation equivariance is typically sought through data augmentation, but patch-wise equivariance is more difficult. We present Harmonic Networks or H-Nets, a CNN exhibiting equivariance to patch-wise translation and 360-rotation. We achieve this by replacing regular CNN filters with circular harmonics, returning a maximal response and orientation for every receptive field patch.H-Nets use a rich, parameter-efficient and fixed computational complexity representation, and we show that deep feature maps within the network encode complicated rotational invariants. We demonstrate that our layers are general enough to be used in conjunction with the latest architectures and techniques, such as deep supervision and batch normalization. We also achieve state-of-the-art classification on rotated-MNIST, and competitive results on other benchmark challenges.
translated by 谷歌翻译
Convolutional neural networks have been extremely successful in the image recognition domain because they ensure equivariance to translations. There have been many recent attempts to generalize this framework to other domains, including graphs and data lying on manifolds. In this paper we give a rigorous, theoretical treatment of convolution and equivariance in neural networks with respect to not just translations, but the action of any compact group. Our main result is to prove that (given some natural constraints) convolutional structure is not just a sufficient, but also a necessary condition for equivariance to the action of a compact group. Our exposition makes use of concepts from representation theory and noncommutative harmonic analysis and derives new generalized convolution formulae.
translated by 谷歌翻译
与特殊线性组和嵌入谎言代数结构具有基本关系。尽管谎言代数表示优雅,但很少有研究人员在同构估计与代数表达之间建立了联系。在本文中,我们提出了扭曲的卷积网络(WCN),以有效地估计SL(3)组和SL(3)代数的分组转换。为此,SL(3)组中的六个换向子组组成以形成一个跨摄影转换。对于每个子组,提出了一个翘曲函数,以将Lie代数结构桥接到其在断层扫描中的相应参数上。通过利用扭曲的卷积,同构估计得出了几个简单的伪翻译回归。通过沿着谎言拓扑行走,我们提出的WCN能够学习对构造转换不变的功能。它可以很容易地插入其他基于CNN的方法中。对POT基准和MNIST-PROJ数据集进行了广泛的实验表明,我们提出的方法对同型估计和分类都有效。
translated by 谷歌翻译
我们介绍了CheBlieset,一种对(各向异性)歧管的组成的方法。对基于GRAP和基于组的神经网络的成功进行冲浪,我们利用了几何深度学习领域的最新发展,以推导出一种新的方法来利用数据中的任何各向异性。通过离散映射的谎言组,我们开发由各向异性卷积层(Chebyshev卷积),空间汇集和解凝层制成的图形神经网络,以及全球汇集层。集团的标准因素是通过具有各向异性左不变性的黎曼距离的图形上的等级和不变的运算符来实现的。由于其简单的形式,Riemannian公制可以在空间和方向域中模拟任何各向异性。这种对Riemannian度量的各向异性的控制允许平衡图形卷积层的不变性(各向异性度量)的平衡(各向异性指标)。因此,我们打开大门以更好地了解各向异性特性。此外,我们经验证明了在CIFAR10上的各向异性参数的存在(数据依赖性)甜点。这一关键的结果是通过利用数据中的各向异性属性来获得福利的证据。我们还评估了在STL10(图像数据)和ClimateNet(球面数据)上的这种方法的可扩展性,显示了对不同任务的显着适应性。
translated by 谷歌翻译
基于2D图像的3D对象的推理由于从不同方向查看对象引起的外观差异很大,因此具有挑战性。理想情况下,我们的模型将是对物体姿势变化的不变或等效的。不幸的是,对于2D图像输入,这通常是不可能的,因为我们没有一个先验模型,即在平面外对象旋转下如何改变图像。唯一的$ \ mathrm {so}(3)$ - 当前存在的模型需要点云输入而不是2D图像。在本文中,我们提出了一种基于Icosahedral群卷积的新型模型体系结构,即通过将输入图像投影到iCosahedron上,以$ \ mathrm {so(3)} $中的理由。由于此投影,该模型大致与$ \ mathrm {so}(3)$中的旋转大致相当。我们将此模型应用于对象构成估计任务,并发现它的表现优于合理的基准。
translated by 谷歌翻译
定义网格上卷积的常用方法是将它们作为图形解释并应用图形卷积网络(GCN)。这种GCNS利用各向同性核,因此对顶点的相对取向不敏感,从而对整个网格的几何形状。我们提出了规范的等分性网状CNN,它概括了GCNS施加各向异性仪表等级核。由于产生的特征携带方向信息,我们引入了通过网格边缘并行传输特征来定义的几何消息传递方案。我们的实验验证了常规GCN和其他方法的提出模型的显着提高的表达性。
translated by 谷歌翻译
标准卷积神经网络(CNN)的卷积层与翻译一样。然而,卷积和完全连接的层与其他仿射几何变换并不是等等的或不变的。最近,提出了一类新的CNN,其中CNN的常规层被均衡卷积,合并和批量归一化层代替。 eprovariant神经网络中的最终分类层对于不同的仿射几何变换(例如旋转,反射和翻译)是不变的,并且标量值是通过消除过滤器响应的空间尺寸,使用卷积和向下缩采样的整个网络或平均值来获得。接管过滤器响应。在这项工作中,我们建议整合正交力矩,该矩将功能的高阶统计数据作为编码全局不变性在旋转,反射和翻译中的有效手段。结果,网络的中间层变得模棱两可,而分类层变得不变。出于这个目的,考虑使用最广泛使用的Zernike,伪菜单和正交傅立叶粉刺矩。通过在旋转的MNIST和CIFAR10数据集上集成了组等级CNN(G-CNN)的体系结构中的不变过渡和完全连接的层来评估所提出的工作的有效性。
translated by 谷歌翻译
现有的球形卷积神经网络(CNN)框架在计算方面既可以扩展又是旋转等值的。连续的方法捕获旋转模棱两可,但通常在计算上是过时的。离散的方法提供了更有利的计算性能,但付出了损失。我们开发了一个混合离散(迪斯科)组卷积,该卷积同时均具有等效性,并且在计算上可扩展到高分辨率。虽然我们的框架可以应用于任何紧凑的组,但我们专注于球体。我们的迪斯科球形卷积不仅表现出$ \ text {so}(3)$ rotational equivariance,而且还表现出一种渐近$ \ text {so}(3)/\ text {so}(so}(so}(2)$ rotationation eporational ecorivarianciancience,对于许多应用程序(其中$ \ text {so}(n)$是特殊的正交组,代表$ n $ dimensions中的旋转)。通过稀疏的张量实现,我们可以在球体上的像素数量进行线性缩放,以供计算成本和内存使用情况。对于4K球形图像,与最有效的替代替代品量球卷积相比,我们意识到节省了$ 10^9 $的计算成本和$ 10^4 $的内存使用情况。我们将迪斯科球形CNN框架应用于球体上的许多基准密集预测问题,例如语义分割和深度估计,在所有这些问题上,我们都达到了最先进的性能。
translated by 谷歌翻译
虽然可怕的转化扰动稳健,但是已知卷积神经网络(CNNS)在用更普通的输入的测试时间呈现时呈现极端性能劣化。最近,这种限制具有从CNNS到胶囊网络(Capsnets)的焦点转变。但是,Capsnets遭受了相对较少的理论保障的不变性。我们介绍了一个严格的数学框架,以允许不在任何谎言群体群体,专门使用卷曲(通过谎言群体),而无需胶囊。以前关于集团举报的职责受到本集团的强烈假设的阻碍,这阻止了这些技术在计算机视觉中的共同扭曲中的应用,如仿佛和同类。我们的框架可以实现over \ emph {任何}有限维谎组的组卷积。我们在基准仿射不变分类任务中凭经验验证了我们的方法,在那里我们在越野上达到了常规CNN的准确性,同时优于最先进的帽子,我们在达到$ \ SIMP 30 \%的提高。作为我们框架的普遍性的进一步说明,我们训练了一个众所周知的模型,实现了在众所周知的数据集上的卓越稳健性,其中帽子结果降低。
translated by 谷歌翻译
事实证明,与对称性的对称性在深度学习研究中是一种强大的归纳偏见。关于网格处理的最新著作集中在各种天然对称性上,包括翻译,旋转,缩放,节点排列和仪表变换。迄今为止,没有现有的体系结构与所有这些转换都不相同。在本文中,我们提出了一个基于注意力的网格数据的架构,该体系结构与上述所有转换相似。我们的管道依赖于相对切向特征的使用:一种简单,有效,等效性的替代品,可作为输入作为输入。有关浮士德和TOSCA数据集的实验证实,我们提出的架构在这些基准测试中的性能提高了,并且确实是对各种本地/全球转换的均等,因此具有强大的功能。
translated by 谷歌翻译
卷积神经网络(CNN)在翻译下是固有的等分反,但是,它们没有等效的嵌入机制来处理其他变换,例如旋转和规模变化。存在几种方法,使CNN通过设计在其他转换组下变得等效。其中,可操纵的CNN特别有效。然而,这些方法需要将滤波器重新设计标准网络,筛选涉及复杂的分析功能的预定义基的组合。我们通过实验证明,在选择的基础上的这些限制可能导致模型权重,这对主要深度学习任务进行了次优(例如,分类)。此外,这种硬烘焙的显式配方使得难以设计包括异质特征组的复合网络。为了规避此类问题,我们提出了隐含的等级网络(IEN),其通过优化与标准损耗术语相结合的多目标损耗函数来诱导标准CNN模型的不同层的等级。通过在ROT-MNIST上的VGG和RESNET模型的实验,ROT-TINIMAGENET,SCALE-MNIST和STL-10数据集上,我们表明IEN,即使是简单的配方,也要优于可操纵网络。此外,IEN促进了非均相过滤器组的构建,允许CNNS中的通道数量减少超过30%,同时保持与基线的表现。 IEN的功效进一步验证了视觉对象跟踪的难题。我们表明IEN优于最先进的旋转等级跟踪方法,同时提供更快的推理速度。
translated by 谷歌翻译
许多应用程序需要神经网络的鲁棒性或理想的不变性,以使输入数据的某些转换。最常见的是,通过使用对抗性培训或定义包括设计所需不变性的网络体系结构来解决此要求。在这项工作中,我们提出了一种方法,使网络体系结构通过基于固定标准从(可能连续的)轨道中选择一个元素,从而使网络体系结构相对于小组操作证明是不变的。简而言之,我们打算在将数据馈送到实际网络之前“撤消”任何可能的转换。此外,我们凭经验分析了通过训练或体系结构结合不变性的不同方法的特性,并在鲁棒性和计算效率方面证明了我们方法的优势。特别是,我们研究了图像旋转(可以持续到离散化工件)以及3D点云分类的可证明的方向和缩放不变性方面的鲁棒性。
translated by 谷歌翻译
在这项工作中,我们调查如何实现方面,以纯粹来自数据的平台输入变换,而不会被赋予那些转换的模型。例如,卷积神经网络(CNNS)是对图像转换的等意识别,可以容易地建模的变换(通过垂直或水平地移动像素)。其他转换,例如外平面旋转,不承认一个简单的分析模型。我们提出了一种自动编码器架构,其嵌入了obeeys同时嵌入了一组任意的标准关系,例如翻译,旋转,颜色变化以及许多其他。这意味着它可以拍摄输入图像,并产生由之前未观察到的给定金额的版本(例如,相同对象的不同观点或颜色变化)。尽管延伸到许多(甚至是非几何)转换,但我们的模型在翻译标准规范的特殊情况下完全缩短了CNN。协调对深度网络的可解释性和稳健性是重要的,并且我们证明了在几个合成和实际数据集上成功重新渲染的输入图像的转换版本的结果,以及对象姿态估计的结果。
translated by 谷歌翻译
我们分析了旋转模糊性在应​​用于球形图像的卷积神经网络(CNN)中的作用。我们比较了被称为S2CNN的组等效网络的性能和经过越来越多的数据增强量的标准非等级CNN。所选的体系结构可以视为相应设计范式的基线参考。我们的模型对投影到球体的MNIST或FashionMnist数据集进行了训练和评估。对于固有旋转不变的图像分类的任务,我们发现,通过大大增加数据增强量和网络的大小,标准CNN可以至少达到与Equivariant网络相同的性能。相比之下,对于固有的等效性语义分割任务,非等级网络的表现始终超过具有较少参数的模棱两可的网络。我们还分析和比较了不同网络的推理潜伏期和培训时间,从而实现了对等效架构和数据扩展之间的详细权衡考虑,以解决实际问题。实验中使用的均衡球网络可在https://github.com/janegerken/sem_seg_s2cnn上获得。
translated by 谷歌翻译
可进入的模型可以通过在表示理论和特征领域的语言中制定均衡性要求来提供非常通用和灵活的均衡性,这对许多视觉任务都是有效的。但是,由于3D旋转的数学更复杂,因此在2D情况下得出3D旋转模型要困难得多。在这项工作中,我们采用部分差分运算符(PDOS)来模型3D滤波器,并得出了通用的可检测3D CNN,称为PDO-S3DCNNS。我们证明,模棱两可的过滤器受线性约束的约束,可以在各种条件下有效地解决。据我们所知,PDO-S3DCNNS是3D旋转的最通用的CNN,因为它们涵盖了所有$ SO(3)$及其表示的所有常见子组,而现有方法只能应用于特定的组和特定组和表示。广泛的实验表明,我们的模型可以很好地保留在离散域中的均衡性,并且在SHREC'17检索和ISBI 2012分割任务上的表现都超过了以前的网络复杂性。
translated by 谷歌翻译
现有的等分性神经网络需要先前了解对称组和连续组的离散化。我们建议使用Lie代数(无限发电机)而不是谎言群体。我们的模型,Lie代数卷积网络(L-Chir)可以自动发现对称性,并不需要该组的离散化。我们展示L-CONC可以作为构建任何组的建筑块,以构建任何组的馈电架构。CNN和图表卷积网络都可以用适当的组表示为L-DIV。我们发现L-CONC和物理学之间的直接连接:(1)组不变损失概括场理论(2)欧拉拉格朗法令方程测量鲁棒性,(3)稳定性导致保护法和挪威尔特。这些连接开辟了新的途径用于设计更多普遍等级的网络并将其应用于物理科学中的重要问题
translated by 谷歌翻译