虽然可怕的转化扰动稳健,但是已知卷积神经网络(CNNS)在用更普通的输入的测试时间呈现时呈现极端性能劣化。最近,这种限制具有从CNNS到胶囊网络(Capsnets)的焦点转变。但是,Capsnets遭受了相对较少的理论保障的不变性。我们介绍了一个严格的数学框架,以允许不在任何谎言群体群体,专门使用卷曲(通过谎言群体),而无需胶囊。以前关于集团举报的职责受到本集团的强烈假设的阻碍,这阻止了这些技术在计算机视觉中的共同扭曲中的应用,如仿佛和同类。我们的框架可以实现over \ emph {任何}有限维谎组的组卷积。我们在基准仿射不变分类任务中凭经验验证了我们的方法,在那里我们在越野上达到了常规CNN的准确性,同时优于最先进的帽子,我们在达到$ \ SIMP 30 \%的提高。作为我们框架的普遍性的进一步说明,我们训练了一个众所周知的模型,实现了在众所周知的数据集上的卓越稳健性,其中帽子结果降低。
translated by 谷歌翻译
We introduce Group equivariant Convolutional Neural Networks (G-CNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symmetries. G-CNNs use G-convolutions, a new type of layer that enjoys a substantially higher degree of weight sharing than regular convolution layers. G-convolutions increase the expressive capacity of the network without increasing the number of parameters. Group convolution layers are easy to use and can be implemented with negligible computational overhead for discrete groups generated by translations, reflections and rotations. G-CNNs achieve state of the art results on CI-FAR10 and rotated MNIST.
translated by 谷歌翻译
我们介绍了CheBlieset,一种对(各向异性)歧管的组成的方法。对基于GRAP和基于组的神经网络的成功进行冲浪,我们利用了几何深度学习领域的最新发展,以推导出一种新的方法来利用数据中的任何各向异性。通过离散映射的谎言组,我们开发由各向异性卷积层(Chebyshev卷积),空间汇集和解凝层制成的图形神经网络,以及全球汇集层。集团的标准因素是通过具有各向异性左不变性的黎曼距离的图形上的等级和不变的运算符来实现的。由于其简单的形式,Riemannian公制可以在空间和方向域中模拟任何各向异性。这种对Riemannian度量的各向异性的控制允许平衡图形卷积层的不变性(各向异性度量)的平衡(各向异性指标)。因此,我们打开大门以更好地了解各向异性特性。此外,我们经验证明了在CIFAR10上的各向异性参数的存在(数据依赖性)甜点。这一关键的结果是通过利用数据中的各向异性属性来获得福利的证据。我们还评估了在STL10(图像数据)和ClimateNet(球面数据)上的这种方法的可扩展性,显示了对不同任务的显着适应性。
translated by 谷歌翻译
Convolutional neural networks have been extremely successful in the image recognition domain because they ensure equivariance to translations. There have been many recent attempts to generalize this framework to other domains, including graphs and data lying on manifolds. In this paper we give a rigorous, theoretical treatment of convolution and equivariance in neural networks with respect to not just translations, but the action of any compact group. Our main result is to prove that (given some natural constraints) convolutional structure is not just a sufficient, but also a necessary condition for equivariance to the action of a compact group. Our exposition makes use of concepts from representation theory and noncommutative harmonic analysis and derives new generalized convolution formulae.
translated by 谷歌翻译
生成建模旨在揭示产生观察到的数据的潜在因素,这些数据通常可以被建模为自然对称性,这些对称性是通过不变和对某些转型定律等效的表现出来的。但是,当前代表这些对称性的方法是在需要构建模棱两可矢量场的连续正式化流中所掩盖的 - 抑制了它们在常规的高维生成建模域(如自然图像)中的简单应用。在本文中,我们专注于使用离散层建立归一化流量。首先,我们从理论上证明了对紧凑空间的紧凑型组的模棱两可的图。我们进一步介绍了三个新的品牌流:$ g $ - 剩余的流量,$ g $ - 耦合流量和$ g $ - inverse自动回旋的回旋流量,可以提升经典的残留剩余,耦合和反向自动性流量,并带有等效的地图, $。从某种意义上说,我们证明$ g $ equivariant的差异性可以通过$ g $ - $ residual流量映射,我们的$ g $ - 剩余流量也很普遍。最后,我们首次在诸如CIFAR-10之类的图像数据集中对我们的理论见解进行了补充,并显示出$ G $ equivariant有限的有限流量,从而提高了数据效率,更快的收敛性和提高的可能性估计。
translated by 谷歌翻译
Normalizing flows provide a general mechanism for defining expressive probability distributions, only requiring the specification of a (usually simple) base distribution and a series of bijective transformations. There has been much recent work on normalizing flows, ranging from improving their expressive power to expanding their application. We believe the field has now matured and is in need of a unified perspective. In this review, we attempt to provide such a perspective by describing flows through the lens of probabilistic modeling and inference. We place special emphasis on the fundamental principles of flow design, and discuss foundational topics such as expressive power and computational trade-offs. We also broaden the conceptual framing of flows by relating them to more general probability transformations. Lastly, we summarize the use of flows for tasks such as generative modeling, approximate inference, and supervised learning.
translated by 谷歌翻译
标准情况被出现为对构成组的身份保留转换的物体表示的理想性质,例如翻译和旋转。然而,由组标准规定的表示的表示的表现仍然不完全理解。我们通过提供封面函数计数定理的概括来解决这个差距,这些定理量化了可以分配给物体的等异点的线性可分离和组不变二进制二分层的数量。我们发现可分离二分法的分数由由组动作固定的空间的尺寸决定。我们展示了该关系如何扩展到卷积,元素 - 明智的非线性和全局和本地汇集等操作。虽然其他操作不会改变可分离二分法的分数,但尽管是高度非线性操作,但是局部汇集减少了分数。最后,我们在随机初始化和全培训的卷积神经网络的中间代表中测试了我们的理论,并找到了完美的协议。
translated by 谷歌翻译
卷积神经网络(CNNS)非常有效,因为它们利用自然图像的固有转换不变性。但是,翻译只是无数的有用空间转换之一。在考虑其他空间的侵犯侵犯性时可以获得相同的效率吗?过去已经考虑过这种广义综合,但以高计算成本为例。我们展示了一个简单和精确的建筑,但标准卷积具有相同的计算复杂性。它由一个恒定的图像扭曲,后跟一个简单的卷积,这是深度学习工具箱中的标准块。通过精心制作的经线,所产生的架构可以使成功的架构成为各种各样的双参数空间转换。我们展示了令人鼓舞的现实情景结果,包括谷歌地球数据集(旋转和缩放)中车辆姿势的估计,并且面部在野外注释的面部地标中的面部姿势(在透视下的3D旋转)。
translated by 谷歌翻译
Recent work has constructed neural networks that are equivariant to continuous symmetry groups such as 2D and 3D rotations. This is accomplished using explicit Lie group representations to derive the equivariant kernels and nonlinearities. We present three contributions motivated by frontier applications of equivariance beyond rotations and translations. First, we relax the requirement for explicit Lie group representations with a novel algorithm that finds representations of arbitrary Lie groups given only the structure constants of the associated Lie algebra. Second, we provide a self-contained method and software for building Lie group-equivariant neural networks using these representations. Third, we contribute a novel benchmark dataset for classifying objects from relativistic point clouds, and apply our methods to construct the first object-tracking model equivariant to the Poincar\'e group.
translated by 谷歌翻译
标准卷积神经网络(CNN)的卷积层与翻译一样。然而,卷积和完全连接的层与其他仿射几何变换并不是等等的或不变的。最近,提出了一类新的CNN,其中CNN的常规层被均衡卷积,合并和批量归一化层代替。 eprovariant神经网络中的最终分类层对于不同的仿射几何变换(例如旋转,反射和翻译)是不变的,并且标量值是通过消除过滤器响应的空间尺寸,使用卷积和向下缩采样的整个网络或平均值来获得。接管过滤器响应。在这项工作中,我们建议整合正交力矩,该矩将功能的高阶统计数据作为编码全局不变性在旋转,反射和翻译中的有效手段。结果,网络的中间层变得模棱两可,而分类层变得不变。出于这个目的,考虑使用最广泛使用的Zernike,伪菜单和正交傅立叶粉刺矩。通过在旋转的MNIST和CIFAR10数据集上集成了组等级CNN(G-CNN)的体系结构中的不变过渡和完全连接的层来评估所提出的工作的有效性。
translated by 谷歌翻译
现有的等分性神经网络需要先前了解对称组和连续组的离散化。我们建议使用Lie代数(无限发电机)而不是谎言群体。我们的模型,Lie代数卷积网络(L-Chir)可以自动发现对称性,并不需要该组的离散化。我们展示L-CONC可以作为构建任何组的建筑块,以构建任何组的馈电架构。CNN和图表卷积网络都可以用适当的组表示为L-DIV。我们发现L-CONC和物理学之间的直接连接:(1)组不变损失概括场理论(2)欧拉拉格朗法令方程测量鲁棒性,(3)稳定性导致保护法和挪威尔特。这些连接开辟了新的途径用于设计更多普遍等级的网络并将其应用于物理科学中的重要问题
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
将组对称性直接纳入学习过程,已被证明是模型设计的有效准则。通过生产保证对输入上的组动作改造协议的功能,Group-Secrivariant卷积神经网络(G-CNN)在具有内在对称的学习任务中实现了显着改善的泛化性能。已经研究了G-CNNS的一般理论和实际实施,用于旋转或缩放变换下的平面图像,但仅是单独的。在本文中,我们存在roto-scale-pranslance的CNN(RST-CNN),保证通过耦合组卷积来实现这三个组的增义性。此外,随着现实中的对称变换很少是非常完美的并且通常会受到输入变形的影响,我们提供了对输入失真的表示的等意识的稳定性分析,这激励了(预固定)低频空间下的卷积滤波器的截断扩展模式。所得到的模型可被证明可以实现变形 - 稳健的RST标准,即RST对称性仍然“大约”保存,当通过滋扰数据变形时“被污染”,这是对分布外概述尤为重要的属性。 Mnist,Fashion-Mnist和STL-10的数值实验表明,所提出的模型在现有技术中产生显着的增益,尤其是在数据内旋转和缩放变化的小数据制度中。
translated by 谷歌翻译
强有力的彩票假说(SLTH)规定了足够过度参数(密集的)神经网络中的子网的存在,当随机初始化并且没有任何培训时,可以实现受过全面训练的目标网络的准确性。 \ citet {da2022 -proving}的最新工作表明,SLTH也可以扩展到翻译模棱两可的网络(即CNNS),具有与密集网络中SLT相同的过多叠加级化。但是,现代神经网络能够不仅纳入翻译对称性,而且开发一般的模棱两可的体系结构(例如旋转和排列)一直是一个有力的设计原理。在本文中,我们将slth推广到保留$ g $(即$ g $ equivariant网络)的函数,并以很高的概率证明,可以修剪随机初始初始初始化的过度透明$ g $ - $ g $ - $ g $ equivariant子网网络近似于固定宽度和深度的另一个完全训练的$ g $ equivariant网络。我们进一步证明,我们规定的过透明方案也是误差耐受性的函数。我们为各个组开发了我们的理论,包括重要的理论,例如欧几里得组的子组$ \ text {e}(n)$和对称组的子群体$ g \ leq \ leq \ mathcal {s} _n _n $ - 允许我们找到用于MLP,CNN,$ \ text {e}(2)$的SLTS,并以$ \ text {e}(2)$ - 通知CNN和置换量表等度性网络作为我们统一框架的特定实例,该框架完全扩展了先前的工作。从经验上讲,我们通过修剪过度叠加的$ \ text {e}(2)$来验证我们的理论,并传达CNN和消息传递GNN,以匹配给定的错误耐受性内受过训练的目标网络的性能。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
The principle of equivariance to symmetry transformations enables a theoretically grounded approach to neural network architecture design. Equivariant networks have shown excellent performance and data efficiency on vision and medical imaging problems that exhibit symmetries. Here we show how this principle can be extended beyond global symmetries to local gauge transformations. This enables the development of a very general class of convolutional neural networks on manifolds that depend only on the intrinsic geometry, and which includes many popular methods from equivariant and geometric deep learning.We implement gauge equivariant CNNs for signals defined on the surface of the icosahedron, which provides a reasonable approximation of the sphere. By choosing to work with this very regular manifold, we are able to implement the gauge equivariant convolution using a single conv2d call, making it a highly scalable and practical alternative to Spherical CNNs. Using this method, we demonstrate substantial improvements over previous methods on the task of segmenting omnidirectional images and global climate patterns.
translated by 谷歌翻译
小组卷积神经网络(G-CNN)是卷积神经网络(CNN)的概括,通过在其体系结构中明确编码旋转和排列,在广泛的技术应用中脱颖而出。尽管G-CNN的成功是由它们的\ emph {emplapicit}对称偏见驱动的,但最近的一项工作表明,\ emph {隐式}对特定体系结构的偏差是理解过度参数化神经网的概​​括的关键。在这种情况下,我们表明,通过梯度下降训练了二进制分类的$ L $ layer全宽线性G-CNN,将二进制分类收敛到具有低级别傅立叶矩阵系数的解决方案,并由$ 2/l $ -schatten矩阵规范正规化。我们的工作严格概括了先前对线性CNN的隐性偏差对线性G-CNN的隐性分析,包括所有有限组,包括非交换组的挑战性设置(例如排列),以及无限组的频段限制G-CNN 。我们通过在各个组上实验验证定理,并在经验上探索更现实的非线性网络,该网络在局部捕获了相似的正则化模式。最后,我们通过不确定性原理提供了对傅立叶空间隐式正则化的直观解释。
translated by 谷歌翻译
我们研究了使用动力学系统的流量图相对于输入指数的某些置换的函数的近似值。这种不变的功能包括涉及图像任务的经过研究的翻译不变性功能,但还包含许多在科学和工程中找到新兴应用程序的置换不变函数。我们证明了通过受控的模棱两可的动态系统的通用近似的足够条件,可以将其视为具有对称约束的深度残留网络的一般抽象。这些结果不仅意味着用于对称函数近似的各种常用神经网络体系结构的通用近似,而且还指导设计具有近似值保证的架构的设计,以保证涉及新对称要求的应用。
translated by 谷歌翻译
Building models that comply with the invariances inherent to different domains, such as invariance under translation or rotation, is a key aspect of applying machine learning to real world problems like molecular property prediction, medical imaging, protein folding or LiDAR classification. For the first time, we study how the invariances of a model can be leveraged to provably guarantee the robustness of its predictions. We propose a gray-box approach, enhancing the powerful black-box randomized smoothing technique with white-box knowledge about invariances. First, we develop gray-box certificates based on group orbits, which can be applied to arbitrary models with invariance under permutation and Euclidean isometries. Then, we derive provably tight gray-box certificates. We experimentally demonstrate that the provably tight certificates can offer much stronger guarantees, but that in practical scenarios the orbit-based method is a good approximation.
translated by 谷歌翻译
我们介绍了一种与数据对称性相对的学习表示形式的通用方法。核心思想是将潜在空间分解为不变因素和对称组本身。该组件在语义上分别对应于固有的数据类别,并构成姿势。学习者是自我监督的,并根据相对对称信息来渗透这些语义。该方法是由群体理论的理论结果激励的,并保证了无损,可解释和解开的表示。我们通过涉及具有多种对称性的数据集的实验来实证研究该方法。结果表明,我们的表示形式捕获数据的几何形状,并超过其他模棱两可的表示框架。
translated by 谷歌翻译