操纵铰接对象通常需要多个机器人臂。使多个机器人武器能够在铰接物体上协作地完成操纵任务是一项挑战性。在本文中,我们呈现$ \ textbf {v-mao} $,这是一个学习铰接物体的多臂操纵的框架。我们的框架包括一个变分生成模型,可以为每个机器人臂的物体刚性零件学习接触点分布。从与模拟环境的交互获得训练信号,该模拟环境是通过规划和用于铰接对象的对象控制的新颖制定的新颖制定。我们在定制的Mujoco仿真环境中部署了我们的框架,并证明我们的框架在六种不同的对象和两个不同的机器人上实现了高成功率。我们还表明,生成建模可以有效地学习铰接物体上的接触点分布。
translated by 谷歌翻译
在本文中,我们探讨了机器人是否可以学会重新应用一组多样的物体以实现各种所需的掌握姿势。只要机器人的当前掌握姿势未能执行所需的操作任务,需要重新扫描。具有这种能力的赋予机器人具有在许多领域中的应用,例如制造或国内服务。然而,由于日常物体中的几何形状和状态和行动空间的高维度,这是一个具有挑战性的任务。在本文中,我们提出了一种机器人系统,用于将物体的部分点云和支持环境作为输入,输出序列和放置操作的序列来转换到所需的对象掌握姿势。关键技术包括神经稳定放置预测器,并通过利用和改变周围环境来引发基于图形的解决方案。我们介绍了一个新的和具有挑战性的合成数据集,用于学习和评估所提出的方法。我们展示了我们提出的系统与模拟器和现实世界实验的有效性。我们的项目网页上有更多视频和可视化示例。
translated by 谷歌翻译
抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
Generating grasp poses is a crucial component for any robot object manipulation task. In this work, we formulate the problem of grasp generation as sampling a set of grasps using a variational autoencoder and assess and refine the sampled grasps using a grasp evaluator model. Both Grasp Sampler and Grasp Refinement networks take 3D point clouds observed by a depth camera as input. We evaluate our approach in simulation and real-world robot experiments. Our approach achieves 88% success rate on various commonly used objects with diverse appearances, scales, and weights. Our model is trained purely in simulation and works in the real world without any extra steps. The video of our experiments can be found here.
translated by 谷歌翻译
我们引入了来自多个机器人手的对象的神经隐式表示。多个机器人手之间的不同抓地力被编码为共享的潜在空间。学会了每个潜在矢量以两个3D形状的签名距离函数来解码对象的3D形状和机器人手的3D形状。此外,学会了潜在空间中的距离度量,以保留不同机器人手之间的graSps之间的相似性,其中根据机器人手的接触区域定义了grasps的相似性。该属性使我们能够在包括人手在内的不同抓地力之间转移抓地力,并且GRASP转移有可能在机器人之间分享抓地力,并使机器人能够从人类那里学习掌握技能。此外,我们隐式表示中对象和grasps的编码符号距离函数可用于6D对象姿势估计,并从部分点云中掌握触点优化,这可以在现实世界中启用机器人抓握。
translated by 谷歌翻译
部件组件是机器人中的典型但具有挑战性的任务,机器人将一组各个部件组装成完整的形状。在本文中,我们开发了用于家具组件的机器人组装仿真环境。我们将零件装配任务制定为混凝土加固学习问题,并提出了一种机器人的管道,以学习组装多种椅子。实验表明,当使用看不见的椅子进行测试时,我们的方法在以上对象的环境下实现了74.5%的成功率,并在完整环境下实现了50.0%。我们采用RRT-CONNECT算法作为基线,在计算时间明显更长的时间后,只能实现18.8%的成功率。我们的项目网页提供了补充材料和视频。
translated by 谷歌翻译
6D在杂乱的场景中抓住是机器人操纵中的长期存在。由于状态估计不准确,开环操作管道可能会失败,而大多数端到端的掌握方法尚未缩放到具有障碍物的复杂场景。在这项工作中,我们提出了一种新的杂乱场景掌握的最终学习方法。我们的分层框架基于部分点云观测学习无碰撞目标驱动的抓取性。我们学习嵌入空间来编码培训期间的专家掌握计划和一个变形式自动化器,以在测试时间上采样不同的抓握轨迹。此外,我们培训批评网络的计划选择和选项分类器,用于通过分层加强学习切换到实例掌握策略。我们评估我们的方法并与仿真中的几个基线进行比较,并证明我们的潜在规划可以概括为真实的杂乱场景掌握任务。我们的视频和代码可以在https://sites.google.com/view/latent-grasping中找到。
translated by 谷歌翻译
我们建议学习使用隐式功能通过灵巧的手来产生抓握运动来操纵。通过连续的时间输入,该模型可以生成连续且平滑的抓握计划。我们命名了建议的模型连续掌握函数(CGF)。 CGF是通过使用3D人类演示的有条件变异自动编码器的生成建模来学习的。我们将首先通过运动重试将大规模的人类对象相互作用轨迹转换为机器人演示,然后使用这些演示训练CGF。在推断期间,我们使用CGF进行采样,以在模拟器中生成不同的抓握计划,并选择成功的抓握计划以转移到真实的机器人中。通过对不同人类数据的培训,我们的CGF允许概括来操纵多个对象。与以前的计划算法相比,CGF更有效,并且在转移到真正的Allegro手抓住的情况下,成功率显着提高。我们的项目页面位于https://jianglongye.com/cgf
translated by 谷歌翻译
我们探索一种新的方法来感知和操纵3D铰接式物体,该物体可以概括地使机器人阐明看不见的对象。我们提出了一个基于视觉的系统,该系统学会预测各种铰接物体的各个部分的潜在运动,以指导系统的下游运动计划以表达对象。为了预测对象运动,我们训练一个神经网络,以输出一个密集的向量场,代表点云中点云中点的点运动方向。然后,我们根据该向量领域部署一个分析运动计划者,以实现产生最大发音的政策。我们完全在模拟中训练视觉系统,并演示了系统在模拟和现实世界中概括的对象实例和新颖类别的能力,并将我们的政策部署在没有任何填充的锯耶机器人上。结果表明,我们的系统在模拟和现实世界实验中都达到了最先进的性能。
translated by 谷歌翻译
为了充分利用多指灵敏机器人手的多功能性进行对象抓握,必须满足手动对象相互作用和对象几何在GRASP计划期间引入的复杂物理约束。我们提出了一种组合生成模型和双重优化的综合方法,以计算新颖看不见的对象的多样化掌握。首先,从仅在六个YCB对象上训练的条件变异自动编码器获得了掌握预测。然后,通过共同求解碰撞感知的逆运动学,力闭合和摩擦约束作为一种非凸双弯曲曲线优化,将预测投射到运动学和动态可行的grasps的歧管上。我们通过成功抓住各种看不见的家庭物体,包括对其他类型的机器人抓手的挑战,来证明我们方法对硬件的有效性。我们的结果的视频摘要可在https://youtu.be/9dtrimbn99i上获得。
translated by 谷歌翻译
在现实世界中,教授多指的灵巧机器人在现实世界中掌握物体,这是一个充满挑战的问题,由于其高维状态和动作空间。我们提出了一个机器人学习系统,该系统可以进行少量的人类示范,并学会掌握在某些被遮挡的观察结果的情况下掌握看不见的物体姿势。我们的系统利用了一个小型运动捕获数据集,并为多指的机器人抓手生成具有多种多样且成功的轨迹的大型数据集。通过添加域随机化,我们表明我们的数据集提供了可以将其转移到策略学习者的强大抓地力轨迹。我们训练一种灵活的抓紧策略,该策略将对象的点云作为输入,并预测连续的动作以从不同初始机器人状态掌握对象。我们在模拟中评估了系统对22多伏的浮动手的有效性,并在现实世界中带有kuka手臂的23多杆Allegro机器人手。从我们的数据集中汲取的政策可以很好地概括在模拟和现实世界中的看不见的对象姿势
translated by 谷歌翻译
对于未来的家庭辅助机器人来说,在日常人类环境中了解和操纵不同的3D对象是必不可少的。旨在构建可以在各种3D形状上执行各种操纵任务的可扩展系统,最近的作品提倡并展示了有希望的结果学习视觉可行的负担能力,该结果标记了输入3D几何学上的每个点,并以完成下游任务的可能性(例如,推动下游任务)或接送)。但是,这些作品仅研究了单杆操纵任务,但是许多现实世界的任务需要两只手才能协作。在这项工作中,我们提出了一个新颖的学习框架Dualafford,以学习双手操纵任务的协作负担。该方法的核心设计是将两个抓手的二次问题减少到两个分离但相互联系的子任务中,以进行有效的学习。使用大规模的partnet-Mobility和Shapenet数据集,我们设置了四个基准任务,以进行双拖把操作。实验证明了我们方法比三个基线的有效性和优势。可以在https://hyperplane-lab.github.io/dualafford上找到其他结果和视频。
translated by 谷歌翻译
机器人操纵计划是找到一系列机器人配置的问题,该配置涉及与场景中的对象的交互,例如掌握,放置,工具使用等来实现这种相互作用,传统方法需要手工设计的特征和对象表示,它仍然是如何以灵活有效的方式描述与任意对象的这种交互的开放问题。例如,通过3D建模的最新进步启发,例如,NERF,我们提出了一种方法来表示对象作为神经隐式功能,我们可以在其中定义和共同列车交互约束函数。所提出的像素对准表示直接从具有已知相机几何形状的相机图像推断出,当时在整个操纵管道中作为感知组件,同时能够实现连续的机器人操纵计划。
translated by 谷歌翻译
在机器人操作中,以前未见的新物体的自主抓住是一个持续的挑战。在过去的几十年中,已经提出了许多方法来解决特定机器人手的问题。最近引入的Unigrasp框架具有推广到不同类型的机器人抓手的能力。但是,此方法不适用于具有闭环约束的抓手,并且当应用于具有MultiGRASP配置的机器人手时,具有数据范围。在本文中,我们提出了有效绘制的,这是一种独立于抓手模型规范的广义掌握合成和抓地力控制方法。有效绘制利用抓地力工作空间功能,而不是Unigrasp的抓属属性输入。这在训练过程中将记忆使用量减少了81.7%,并可以推广到更多类型的抓地力,例如具有闭环约束的抓手。通过在仿真和现实世界中进行对象抓住实验来评估有效绘制的有效性;结果表明,所提出的方法在仅考虑没有闭环约束的抓手时也胜过Unigrasp。在这些情况下,有效抓取在产生接触点的精度高9.85%,模拟中的握把成功率提高了3.10%。现实世界实验是用带有闭环约束的抓地力进行的,而Unigrasp无法处理,而有效绘制的成功率达到了83.3%。分析了该方法的抓地力故障的主要原因,突出了增强掌握性能的方法。
translated by 谷歌翻译
As the basis for prehensile manipulation, it is vital to enable robots to grasp as robustly as humans. In daily manipulation, our grasping system is prompt, accurate, flexible and continuous across spatial and temporal domains. Few existing methods cover all these properties for robot grasping. In this paper, we propose a new methodology for grasp perception to enable robots these abilities. Specifically, we develop a dense supervision strategy with real perception and analytic labels in the spatial-temporal domain. Additional awareness of objects' center-of-mass is incorporated into the learning process to help improve grasping stability. Utilization of grasp correspondence across observations enables dynamic grasp tracking. Our model, AnyGrasp, can generate accurate, full-DoF, dense and temporally-smooth grasp poses efficiently, and works robustly against large depth sensing noise. Embedded with AnyGrasp, we achieve a 93.3% success rate when clearing bins with over 300 unseen objects, which is comparable with human subjects under controlled conditions. Over 900 MPPH is reported on a single-arm system. For dynamic grasping, we demonstrate catching swimming robot fish in the water.
translated by 谷歌翻译
对于移动机器人而言,与铰接式对象的交互是一项具有挑战性但重要的任务。为了应对这一挑战,我们提出了一条新型的闭环控制管道,该管道将负担能力估计的操纵先验与基于采样的全身控制相结合。我们介绍了完全反映了代理的能力和体现的代理意识提供的概念,我们表明它们的表现优于其最先进的对应物,这些对应物仅以最终效果的几何形状为条件。此外,发现闭环负担推论使代理可以将任务分为多个非连续运动,并从失败和意外状态中恢复。最后,管道能够执行长途移动操作任务,即在现实世界中开放和关闭烤箱,成功率很高(开放:71%,关闭:72%)。
translated by 谷歌翻译
成功掌握对象的能力在机器人中是至关重要的,因为它可以实现多个交互式下游应用程序。为此,大多数方法要么计算兴趣对象的完整6D姿势,要么学习预测一组掌握点。虽然前一种方法对多个对象实例或类没有很好地扩展,但后者需要大的注释数据集,并且受到新几何形状的普遍性能力差的阻碍。为了克服这些缺点,我们建议教授一个机器人如何用简单而简短的人类示范掌握一个物体。因此,我们的方法既不需要许多注释图像,也不限于特定的几何形状。我们首先介绍了一个小型RGB-D图像,显示人对象交互。然后利用该序列来构建表示所描绘的交互的相关手和对象网格。随后,我们完成重建对象形状的缺失部分,并估计了场景中的重建和可见对象之间的相对变换。最后,我们从物体和人手之间的相对姿势转移a-prioriz知识,随着当前对象在场景中的估计到机器人的必要抓握指令。与丰田的人类支持机器人(HSR)在真实和合成环境中的详尽评估证明了我们所提出的方法的适用性及其优势与以前的方法相比。
translated by 谷歌翻译
Recent 3D-based manipulation methods either directly predict the grasp pose using 3D neural networks, or solve the grasp pose using similar objects retrieved from shape databases. However, the former faces generalizability challenges when testing with new robot arms or unseen objects; and the latter assumes that similar objects exist in the databases. We hypothesize that recent 3D modeling methods provides a path towards building digital replica of the evaluation scene that affords physical simulation and supports robust manipulation algorithm learning. We propose to reconstruct high-quality meshes from real-world point clouds using state-of-the-art neural surface reconstruction method (the Real2Sim step). Because most simulators take meshes for fast simulation, the reconstructed meshes enable grasp pose labels generation without human efforts. The generated labels can train grasp network that performs robustly in the real evaluation scene (the Sim2Real step). In synthetic and real experiments, we show that the Real2Sim2Real pipeline performs better than baseline grasp networks trained with a large dataset and a grasp sampling method with retrieval-based reconstruction. The benefit of the Real2Sim2Real pipeline comes from 1) decoupling scene modeling and grasp sampling into sub-problems, and 2) both sub-problems can be solved with sufficiently high quality using recent 3D learning algorithms and mesh-based physical simulation techniques.
translated by 谷歌翻译
Reliably planning fingertip grasps for multi-fingered hands lies as a key challenge for many tasks including tool use, insertion, and dexterous in-hand manipulation. This task becomes even more difficult when the robot lacks an accurate model of the object to be grasped. Tactile sensing offers a promising approach to account for uncertainties in object shape. However, current robotic hands tend to lack full tactile coverage. As such, a problem arises of how to plan and execute grasps for multi-fingered hands such that contact is made with the area covered by the tactile sensors. To address this issue, we propose an approach to grasp planning that explicitly reasons about where the fingertips should contact the estimated object surface while maximizing the probability of grasp success. Key to our method's success is the use of visual surface estimation for initial planning to encode the contact constraint. The robot then executes this plan using a tactile-feedback controller that enables the robot to adapt to online estimates of the object's surface to correct for errors in the initial plan. Importantly, the robot never explicitly integrates object pose or surface estimates between visual and tactile sensing, instead it uses the two modalities in complementary ways. Vision guides the robots motion prior to contact; touch updates the plan when contact occurs differently than predicted from vision. We show that our method successfully synthesises and executes precision grasps for previously unseen objects using surface estimates from a single camera view. Further, our approach outperforms a state of the art multi-fingered grasp planner, while also beating several baselines we propose.
translated by 谷歌翻译
Reorienting objects using extrinsic supporting items on the working platform is a meaningful, nonetheless challenging manipulation task, considering the elaborate geometry of the objects and the robot's feasible motions. In this work, we propose a pipeline using the RGBD camera's perception results to predict objects' stable placements afforded by supporting items, including a generation stage, a refinement stage, and a classification stage. Then, we construct manipulation graphs that enclose shared grasp configurations to transform objects' stable placements. The robot can reorient objects through sequential pick-and-place operations based on the manipulation graphs. We show in experiments that our approach is effective and efficient. The simulation experiments demonstrate that our pipeline can generalize to novel objects in random start poses on the working platform, generating diverse placements with high accuracy. Moreover, the manipulation graphs are conducive to providing collision-free motions for the robot to reorient objects. We also employ a robot in real-world experiments to perform sequential pick-and-place operations, indicating that our method can transfer objects' placement poses in real scenes.
translated by 谷歌翻译